Abstract
This study aims to fill the gap in understanding the trends, methods, content, and impacts of technology implementation in differentiated biology education at the secondary and higher education levels. The methodology employed is a systematic literature review on the use of technology in differentiated biology education. The search was conducted using the terms ‘technology’ AND (‘differentiated instruction’ OR ‘personalized learning’ OR ‘adaptive teaching’ OR ‘learning style’) AND ‘biology education’ in the Scopus database, yielding 922 articles, of which only 18 met the criteria for further analysis. The findings indicate a rapid increase in publications, with 61% of the articles published between 2022 and 2024. The majority of publications come from journals in the fields of social sciences/education, while contributions from journals in biochemistry, genetics, and molecular biology remain limited, suggesting the need for cross-disciplinary collaboration. Most of the studies (78%) used quantitative and mixed methods, with 72% focusing on higher education. The most commonly used technologies include hands-on tools, data analysis tools, and collaborative tools, with animal anatomy and physiology as the dominant topics. These technologies support learning by enhancing understanding, engagement, and learning outcomes, as well as observation and scientific explanation skills at the secondary school level, and research and bioinformatics skills at the higher education level.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Review Article
EURASIA J Math Sci Tech Ed, Volume 21, Issue 3, March 2025, Article No: em2598
https://doi.org/10.29333/ejmste/16044
Publication date: 01 Mar 2025
Online publication date: 25 Feb 2025
Article Views: 197
Article Downloads: 107
Open Access References How to cite this articleReferences
- Abel, A., & Ziman, R. (2024). Learning dogfish shark anatomy using 3D-printed models: A feasibility study. Education Sciences, 14(1), Article 34. https://doi.org/10.3390/educsci14010034
- Abel, V. R., Tondeur, J., & Sang, G. (2022). Teacher perceptions about ICT integration into classroom instruction. Education Sciences, 12(9), Article 609. https://doi.org/10.3390/educsci12090609
- Adeika, B. I., Ariyibi, A., Abiodun, P. O., & Owolabi, O. A. (2024). Breaking barriers: Promoting motivation, engagement, and learning success among biology undergraduates from minority backgrounds. In Proceedings of the ASEE Annual Conference and Exposition. ASEE PEER. https://doi.org/10.18260/1-2--48406
- Aghasafari, S. (2023). Virtual visual arts integration and biology: More favor or challenging for emergent bi/multilingual high schoolers. Journal of Interdisciplinary Studies in Education, 12(1), 44-61. https://doi.org/10.1386/vi_00085_1
- Aleksandrovich, S. I., Ramazan, T., Utegaliyeva, R., Sarimbayeva, B., Keubassova, G., Bissalyyeva, R., Syman, K., & Abdikarimova, G. (2024). Transformative applications in biology education: A case study on the efficacy of adaptive learning with numerical insights. Caspian Journal of Environmental Sciences, 22(2), 395-408. https://doi.org/10.22124/cjes.2024.7731
- Alhussain, T. (2020). How technology can mitigate the impact of COVID 19 on education? A case study of Saudi electronic university (SEU). Journal of Theoretical and Applied Information Technology, 98(21), 3347-3356. https://www.jatit.org/volumes/Vol98No21/3Vol98No21.pdf
- Al-Maroof, R. S., Alshurideh, M. T., Salloum, S. A., AlHamad, A. Q., & Gaber, T. (2021). Acceptance of Google Meet during the spread of coronavirus by Arab university students. Informatics, 8(2), Article 24. https://doi.org/10.3390/informatics8020024
- Almasri, F. (2022). The impact of e-learning, gender-groupings and learning pedagogies in biology undergraduate female and male students’ attitudes and achievement. Education and Information Technologies, 27(6), 8329-8380. https://doi.org/10.1007/s10639-022-10967-z
- Amur, Z. H., Hooi, Y. K., & Soomro, G. M. (2022). Automatic short answer grading (ASAG) using attention-based deep learning MODEL. In Proceedings of the 2022 International Conference on Digital Transformation and Intelligence (pp. 1-7). IEEE. https://doi.org/10.1109/ICDI57181.2022.10007187
- Anderson, S. E., & Putman, R. S. (2020). Special education teachers’ experience, confidence, beliefs, and knowledge about integrating technology. Journal of Special Education Technology, 35(1), 37-50. https://doi.org/10.1177/0162643419836409
- Ariely, M., Nazaretsky, T., & Alexandron, G. (2024). Causal-mechanical explanations in biology: Applying automated assessment for personalized learning in the science classroom. Journal of Research in Science Teaching, 61(8), 1858-1889. https://doi.org/10.1002/tea.21929
- Athanasiou, K. (2021). Biology and health education: Design, implementation and evaluation of a course on environmental health education aiming at the scientific literacy of future teachers. Eurasian Journal of Science and Environmental Education, 1(1), 51-61. https://doi.org/10.30935/ejsee/11871
- Ayasrah, F. T. M. (2020). Challenging factors and opportunities of technology in education. International Journal of Advanced Science and Technology, 29(4s), 962-972. http://sersc.org/journals/index.php/IJAST/article/view/6557
- Barnes, R. L. (2022). A protein purification card game develops subject knowledge and transferable skills. Journal of Biological Education, 56(4), 365-375. https://doi.org/10.1080/00219266.2020.1799844
- Bećirović, S. (2023). Challenges and barriers for effective integration of technologies into teaching and learning. In Digital pedagogy. Springer briefs in education (pp. 123-133). Springer. https://doi.org/10.1007/978-981-99-0444-0_10
- Ben, S., Liu, C., Yang, P., Gong, J., & He, Y. (2024). A practical evaluation of online self-assisted previewing architecture on rain classroom for biochemistry lab courses. Frontiers in Education, 9. https://doi.org/10.3389/feduc.2024.1326284
- Carmona, M. M., Griñán, A. P., Fernández, E. A., Díaz, M. F., & Salgado, M. G. (2024). A BreakoutEDU to evaluate gene expression contents in 4 ESO. Design, application and evaluation of the emotions of its implementation. Revista Eureka, 21(1). https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2024.v21.i1.1205
- Cellier, P., Charnois, T., Plantevit, M., Rigotti, C., Crémilleux, B., Gandrillon, O., Kléma, J., & Manguin, J.-L. (2015). Sequential pattern mining for discovering gene interactions and their contextual information from biomedical texts. Journal of Biomedical Semantics, 6(1), Article 27. https://doi.org/10.1186/s13326-015-0023-3
- Cen, L., Ruta, D., Powell, L., & Ng, J. (2014). Learning alone or in a group–An empirical case study of the collaborative learning patterns and their impact on student grades. In Proceedings of 2014 International Conference on Interactive Collaborative Learning (pp. 627-632). https://doi.org/10.1109/ICL.2014.7017845
- Chapple, D. G., Wilson, L., Herbert, R. I., Martin, R. S., Weir, B., & Ho, S. (2022). Do students value on-campus field-based education? A case study of science educational initiatives in the Jock Marshall Reserve. International Journal of Innovation in Science and Mathematics Education, 30(2), 29-45. https://doi.org/10.30722/IJISME.30.02.003
- Chawla, S., & Tyagi, K. (2024). The CRISPR-Cas technology: Trends in healthcare. In S. Joshi, D. Verma, & R. K. Gupta (Eds.), CRISPR-Cas system in translational biotechnology (pp. 109-130). Academic Press. https://doi.org/10.1016/B978-0-323-91808-4.00012-2
- Chuang, T.-F., Chou, Y.-H., Pai, J.-Y., Huang, C.-N., Bair, H., Pai, A., & Yu, N.-C. (2023). Using virtual reality technology in biology education: Satisfaction & learning outcomes of high school students. American Biology Teacher, 85(1), 23-32. https://doi.org/10.1525/abt.2023.85.1.23
- Cohen, K., & Demner-Fushman, D. (2014). Biomedical natural language processing. De Gruyter. https://doi.org/10.1075/nlp.11
- Cooper, G., & Tang, K.-S. (2024). Pixels and pedagogy: Examining science education imagery by generative artificial intelligence. Journal of Science Education and Technology, 33, 556-568. https://doi.org/10.1007/s10956-024-10104-0
- Dahlen, O., Lervik, A., Aarøen, O., Cabriolu, R., Lyng, R., & van Erp, T. S. (2020). Teaching complex molecular simulation algorithms: Using self-evaluation to tailor web-based exercises at an individual level. Computer Applications in Engineering Education, 28(4), 779-791. https://doi.org/10.1002/cae.22249
- Daruwala, I., Bretas, S., & Ready, D. D. (2021). When logics collide: Implementing technology-enabled personalization in the age of accountability. Educational Researcher, 50(3), 157-164. https://doi.org/10.3102/0013189X20960674
- Demakova, I. D., & Shustova, I. Y. (2021). Systematic approach for efficient use of research methods in educational theory. Education and Self Development, 16(3), 249-260. https://doi.org/10.26907/esd.16.3.22
- Dixon, N., & Packwood, A. (2023). Personalised learning paths for information literacy using Canvas MasteryPaths. Journal of Information Literacy, 17(1), 105-119. https://doi.org/10.11645/17.1.3343
- Dunbar-Wallis, A., Katcher, J., Moore, W., & Corwin, L. A. (2024). An online CURE taught at a community college during the pandemic shows mixed results for development of research self-efficacy and in-class relationships. Journal of Science Education and Technology, 33(1), 118-130. https://doi.org/10.1007/s10956-023-10078-5
- Fausan, M. M., Susilo, H., Gofur, A., Sueb, S., & Yusop, F. D. (2021). The scientific literacy performance of gifted young scientist candidates in the digital age. Jurnal Cakrawala Pendidikan, 40(2). https://doi.org/10.21831/cp.v40i2.39434
- Fernández, G. E. A., López-Banet, L., & Ruiz-Vidal, A. (2022). Students’ performance in the scientific skills during secondary education. Eurasia Journal of Mathematics, Science and Technology Education, 18(10), Article em2165. https://doi.org/10.29333/ejmste/12444
- Fink, A. D. D., Allen, T., Arriola, P. E., Barea-Rodriguez, E. J., Jacob, N. P., Kelrick, M. I., Otto, J., Reiness, C. G., & Washington, J. (2024). PULSE ambassadors program: Empowering departments to transform STEM education for inclusion and student success. Journal of Microbiology and Biology Education, 25(3), Article e00052-24. https://doi.org/10.1128/jmbe.00052-24
- Gallagher, K. E., Kadokura, E., Eckert, L. O., Miyake, S., Mounier-Jack, S., Aldea, M., Ross, D. A., & Watson-Jones, D. (2016). Factors influencing completion of multi-dose vaccine schedules in adolescents: A systematic review. BMC Public Health, 16, 172. https://doi.org/10.1186/s12889-016-2845-z
- Global Education Monitoring Report Team. (n. d.). Global education monitoring report, 2023: Technology in education: A tool on whose terms? UNESCO. https://unesdoc.unesco.org/notice?id=p::usmarcdef_0000385723
- Goff, E. E., Reindl, K. M., Johnson, C., McClean, P., Offerdahl, E. G., Schroeder, N. L., & White, A. R. (2017). Efficacy of a meiosis learning module developed for the virtual cell animation collection. CBE–Life Sciences Education, 16(1). https://doi.org/10.1187/cbe.16-03-0141
- Good, B. M., Nanis, M. A. X., Wu, C., & Su, A. I. (2014). Microtask crowdsourcing for disease mention annotation in PubMed abstracts. Pacific Symposium on Biocomputing, 2015, 282-293. https://doi.org/ 10.1142/9789814644730_0028
- Hadie, S. N. H., Dasiman, R., Omar, N. S., & Abas, R. (2024). Effectiveness of multimedia approaches in embryology teaching: A scoping review. Malaysian Journal of Medicine and Health Sciences, 20(1), 281-292. https://doi.org/10.47836/mjmhs.20.1.36
- Heinrich, C. J., Darling-Aduana, J., & Martin, C. (2020). The potential and prerequisites of effective tablet integration in rural Kenya. British Journal of Educational Technology, 51(2), 498-514. https://doi.org/10.1111/bjet.12870
- Hensen, B., Koren, I., & Klamma, R. (2019). Gamification support for learning in spatial computing environments. Journal of Universal Computer Science, 25(12), 1644-1665. https://doi.org/10.3217/jucs-025-12-1644
- Hidayat, L. E., Basthomi, Y., & Afrilyasanti, R. (2024). Exploring secondary school teachers’ creativity in differentiated instruction (DI) practices across Indonesian EFL classrooms. Thinking Skills and Creativity, 53, Article 101620. https://doi.org/10.1016/j.tsc.2024.101620
- Holtzclaw, J. D., Eisen, A., Whitney, E. M., Penumetcha, M., Hoey, J. J., & Kimbro, K. S. (2006). Incorporating a new bioinformatics component into genetics at a historically black college: Outcomes and lessons. CBE–Life Sciences Education, 5(1), 52-64. https://doi.org/10.1187/cbe.05-04-0071
- Howorth, S. K., Marino, M. T., Flanagan, S., Cuba, M. J., & Lemke, C. (2024). Integrating emerging technologies to enhance special education teacher preparation. Journal of Research in Innovative Teaching and Learning. https://doi.org/10.1108/JRIT-08-2024-0208
- Huang, P.-S., Chiu, P.-S., Huang, Y.-M., Zhong, H.-X., & Lai, C.-F. (2020). Cooperative mobile learning for the investigation of natural science courses in elementary schools. Sustainability, 12(16), Article 6606. https://doi.org/10.3390/su12166606
- Huang, R., Zhuang, R., & Chen, S. (2023). Technology-enhanced instructional practice during COVID-19 pandemic and implications for new normal: Experience from China. In W. O. Lee, P. Brown, A. L. Goodwin, & A. Green (Eds.), International handbook on education development in the Asia-Pacific (pp. 1557-1575). Springer. https://doi.org/10.1007/978-981-19-6887-7_55
- Jerry Reen, F., Jump, O., McEvoy, G., McSharry, B. P., Morgan, J., Murphy, D., O’Leary, N., O’Mahony, B., Scallan, M., Walsh, C., & Supple, B. (2022). Developing student codesigned immersive virtual reality simulations for teaching of challenging concepts in molecular and cellular biology. FEMS Microbiology Letters, 369(1), Article fnac051. https://doi.org/10.1093/femsle/fnac051
- Johnson, J. E., Kumar, P., Easterly, C., Esler, M., Mehta, S., Eschenlauer, A. C., Hegeman, A. D., Jagtap, P. D., & Griffin, T. J. (2018). Improve your galaxy text life: The query tabular tool. F1000Research, 7. https://doi.org/10.12688/f1000research.16450.1
- Kaimara, P., & Deliyannis, I. (2019). Why should I play this game? The role of motivation in smart pedagogy. In L. Daniela (Ed.), Didactics of smart pedagogy (pp. 113-137). Springer. https://doi.org/10.1007/978-3-030-01551-0_6
- Khan, A., Zeb, I., Zhang, Y., & Tahir. (2023). Impact of emerging technologies on cognitive development: The mediating role of digital social support among higher education students. International Journal of Educational Research and Innovation, (20), 1-15. https://doi.org/10.46661/ijeri.8362
- Knight, J. D., Fulop, R. M., Márquez-Magaña, L., & Tanner, K. D. (2008). Investigative cases and student outcomes in an upper-division cell and molecular biology laboratory course at a minority-serving institution. CBE–Life Sciences Education, 7(4), 382-393. https://doi.org/10.1187/cbe.08-06-0027
- Kochmar, E., Vu, D. Do, Belfer, R., Gupta, V., Serban, I. V., & Pineau, J. (2022). Automated data-driven generation of personalized pedagogical interventions in intelligent tutoring systems. International Journal of Artificial Intelligence in Education, 32(2), 323-349. https://doi.org/10.1007/s40593-021-00267-x
- Kubsch, M., Krist, C., & Rosenberg, J. M. (2023). Distributing epistemic functions and tasks–A framework for augmenting human analytic power with machine learning in science education research. Journal of Research in Science Teaching, 60(2), 423-447. https://doi.org/10.1002/tea.21803
- Kumar, A., Saudagar, A. K. J., Alkhathami, M., Alsamani, B., Khan, M. B., Hasanat, M. H. A., Ahmed, Z. H., Kumar, A., & Srinivasan, B. (2023). Gamified learning and assessment using ARCS with next-generation AIoMT integrated 3D animation and virtual reality simulation. Electronics, 12(4), Article 835. https://doi.org/10.3390/electronics12040835
- Kusumawati, G., Lestari, S. R., & Saptasari, M. (2021). Implementation of e-modules endocrine system based of problem based learning to improve students’ creative thinking skills and cognitive learning outcomes. AIP Conference Proceedings, 2330(1), Article 30026. https://doi.org/10.1063/5.0043314
- Lasserson, T. J., Thomas, J., & Higgins, J. P. T. (2019). Starting a review. In J. P. T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, & V. A. Welch (Eds.), Cochrane Handbook for Systematic Reviews of Interventions (pp. 3-12). Wiley. https://doi.org/10.1002/9781119536604.ch1
- Latre-Navarro, L., Quintas-Hijós, A., & Sáez-Bondía, M.-J. (2024). The combined effects of an anatomy program integrating drawing and gamification on basic psychological needs satisfaction among sport sciences students: Results of a natural experiment. Anatomical Sciences Education, 17(2), 366-378. https://doi.org/10.1002/ase.2358
- Lavine, R. (2011). Biomedical animations and video clips as educational tools. Medical Science Educator, 21(2), 177-180. https://doi.org/10.1007/BF03341615
- Lawson, L. B., Lind, C. M., Gibson, J. W., & Höner zu Bentrup, K. (2020). Do voluntary lab-based active learning sessions impact medical student knowledge retention? Medical Science Educator, 30(2), 823-831. https://doi.org/10.1007/s40670-020-00956-7
- Lei, Z., Zhou, H., Hu, W., & Liu, G.-P. (2022). Impact of COVID-19 pandemic on engineering education: Case study with the online laboratory NCSLab. International Journal of Engineering Education, 38(5 B), 1505-1512.
- Liang, L., Yan, X.-C., Cao, X.-L., He, L., Zheng, M.-H., Qin, H.-Y., & Han, H. (2023). A student experience-based teaching to improve the understanding of genotype-phenotype relationship in classroom teaching of medical genetics. Journal of Biological Education, 57(3), 555-565. https://doi.org/10.1080/00219266.2021.1933132
- Liang, W. (2021). University teachers’ technology integration in teaching English as a foreign language: Evidence from a case study in mainland China. SN Social Sciences, 1, Article 219. https://doi.org/10.1007/s43545-021-00223-5
- Lindl, A., Krauss, S., Schilcher, A., & Hilbert, S. (2020). Statistical methods in transdisciplinary educational research. Frontiers in Education, 5. https://doi.org/10.3389/feduc.2020.00097
- López-Jiménez, J. J., Fernández-Alemán, J. L., González, L. L., Sequeros, O. G., Valle, B. M., García-Berná, J. A., Idri, A., & Toval, A. (2022). Taking the pulse of a classroom with a gamified audience response system. Computer Methods and Programs in Biomedicine, 213, Article 106459. https://doi.org/10.1016/j.cmpb.2021.106459
- Luo, H., Zuo, M., & Wang, J. (2022). Promise and reality: Using ICTs to bridge China’s rural-urban divide in education. Educational Technology Research and Development, 70(3), 1125-1147. https://doi.org/10.1007/s11423-022-10118-8
- Makolo, A. U., Smile, O., Ezekiel, K. B., Destefano, A. M., McCall, J. L., & Isokpehi, R. D. (2022). Leveraging H3Africa scholarly publications for technology-enhanced personalized bioinformatics education. Education Sciences, 12(12), Article 859. https://doi.org/10.3390/educsci12120859
- Mallah Boustani, N., & Merhej Sayegh, M. (2021). E-learning: Factors affecting students online learning during COVID-19 quarantine in a developing country. In I. Saad, C. Rosenthal-Sabroux, F. Gargouri, & P. E. Arduin (Eds.), Information and knowledge systems. Digital technologies, artificial intelligence and decision making. ICIKS 2021. Lecture notes in business information processing, vol 425 (pp. 17-28). Springer. https://doi.org/10.1007/978-3-030-85977-0_2
- Mansour, N., Aras, C., Staarman, J. K., & Alotaibi, S. B. M. (2024). Embodied learning of science concepts through augmented reality technology. Education and Information Technologies. https://doi.org/10.1007/s10639-024-13120-0
- Martínez-Carmona, M., Ayuso Fernández, G. E., Fernández-Díaz, M., Serrano-García, F., & Griñán, A. P. (2024). A BreakoutEDU for understanding gene expression in high school. A case study: Design, implementation, and evaluation of the emotions of its implementation. Biochemistry and Molecular Biology Education, 53(1), 46-56. https://doi.org/10.1002/bmb.21863
- McDonald, A. R., Roberts, R., Koeppe, J. R., & Hall, B. L. (2022). Undergraduate structural biology education: A shift from users to developers of computation and simulation tools. Current Opinion in Structural Biology, 72, 39-45. https://doi.org/10.1016/j.sbi.2021.07.012
- Mendoza Rojas, H. J. (2024). Use of gamified digital tools in the evaluation of prior knowledge of human anatomy. Investigacion en Educacion Medica, 13(49), 79-88. https://doi.org/10.22201/fm.20075057e.2024.50.23558
- Moro, C., Birt, J., Stromberga, Z., Phelps, C., Clark, J., Glasziou, P., & Scott, A. M. (2021). Virtual and augmented reality enhancements to medical and science student physiology and anatomy test performance: A systematic review and meta-analysis. Anatomical Sciences Education, 14(3), 368-376. https://doi.org/10.1002/ase.2049
- Msambwa, M. M., Daniel, K., & Lianyu, C. (2024). Integration of information and communication technology in secondary education for better learning: A systematic literature review. Social Sciences and Humanities Open, 10, Article 101203. https://doi.org/10.1016/j.ssaho.2024.101203
- Munzil, M., & Perwira, M. K. P. R. (2021). Development of e-learning based inquiry guided and VARK learning style on the topic of chemical bond as teaching material in COVID-19 pandemic era. AIP Conference Proceedings, 2330(1), Article 20028. https://doi.org/10.1063/5.0043244
- Munzil, Sutrisno, S., Dasna, I. W., & Laksmana, S. D. (2021). Development of main group element digital encyclopedias as learning resources to support learning activities at home in COVID-19 pandemic condition. AIP Conference Proceedings, 2330(1), Article 20030. https://doi.org/10.1063/5.0043251
- Nasution, N. E. A. (2023). Using artificial intelligence to create biology multiple choice questions for higher education. Agricultural and Environmental Education, 2(1), 4-8. https://doi.org/10.29333/agrenvedu/13071
- Ndikumana, Y., Mugabo, L. R., & Nsabimana, A. (2024). Exploring the challenges and strategies for enhancing biotechnology instruction in a modularized context at University of Rwanda-College of Science and Technology. International Journal of Learning, Teaching and Educational Research, 23(3), 219-247. https://doi.org/10.26803/ijlter.23.3.12
- Nedzinskaite-Maciuniene, R., Stasiunaitiene, E., & Simiene, G. (2022). Through thick and thin: Lower secondary school students’ barriers to learning under COVID-19 conditions. Center for Educational Policy Studies Journal, 12(3), 167-189. https://doi.org/10.26529/cepsj.1103
- Nischal, S., Zulema Cabail, M., & Poon, K. (2024). Combining virtual simulations with take-home projects as a replacement for face-to-face labs in introductory biology laboratory courses. Journal of Biological Education, 58(4), 937-950. https://doi.org/10.1080/00219266.2022.2147206
- Norizan, N. A., Bakar, A. A., & Saidin, S. (2025). GeneXPress card: Development and evaluation of educational card game for DNA transcription subtopics in genetics. International Journal of Evaluation and Research in Education, 14(1), 482-491. https://doi.org/10.11591/ijere.v14i1.30741
- Ntaila, Y. W., & Mbaraka, S. R. (2023). Examining the impact of interactive multimedia instruction on the performance of secondary school students in biology in Dedza District, Malawi. European Journal of Educational Research, 12(4), 1697-1708. https://doi.org/10.12973/eu-jer.12.4.1697
- Oikonomou, E. D., Karvelis, P., Giannakeas, N., Vrachatis, A., Glavas, E., & Tzallas, A. T. (2024). How natural language processing derived techniques are used on biological data: A systematic review. Network Modeling Analysis in Health Informatics and Bioinformatics, 13, Article 23. https://doi.org/10.1007/s13721-024-00458-1
- Ouanes, S., Larnaout, A., & Jouini, L. (2021). Use of modern technology in psychiatry training in a middle-income country. Asia-Pacific Psychiatry, 13(4), Article e12496. https://doi.org/10.1111/appy.12496
- Papazekou, M., Kyprioti, A., Chatzimentor, A., Dimitriadis, C., Vallianos, N., & Mazaris, A. D. (2024). Advancing sea turtle monitoring at nesting and near shore habitats with UAVs, data loggers, and state of the art technologies. Diversity, 16(3), Article 153. https://doi.org/10.3390/d16030153
- Patino, G. A., Amiel, J. M., Brown, M., Lypson, M. L., & Chan, T. M. (2024). The promise and perils of artificial intelligence in health professions education practice and scholarship. Academic Medicine, 99(5), 477-481. https://doi.org/10.1097/ACM.0000000000005636
- Pollock, N. B. (2022). Student performance and perceptions of anatomy and physiology across faceto-face, hybrid, and online teaching lab styles. Advances in Physiology Education, 46(3), 453-460. https://doi.org/10.1152/ADVAN.00074.2022
- Prihoda, D., Maritz, J. M., Klempir, O., Dzamba, D., Woelk, C. H., Hazuda, D. J., Bitton, D. A., & Hannigan, G. D. (2021). The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability. Natural Product Reports, 38(6), 1100-1108. https://doi.org/10.1039/D0NP00055H
- Purssell, E., & McCrae, N. (2020). How to perform a systematic literature review: A guide for healthcare researchers, practitioners and students. Springer. https://doi.org/10.1007/978-3-030-49672-2
- Rababa’h, S. Y., Rababah, L. M., Rababah, M. A., Bany Hani, M. G., Alorani, O. I., & Al-Habies, F. A. M. (2024). Teachers’ perceptions of the barriers of employing educational technology skills in teaching. Obrazovanie i Nauka, 26(9), 74-97. https://doi.org/10.17853/1994-5639-2024-9-74-97
- Ramanujan, P., Bhattacharjea, S., & Alcott, B. (2022). A multi-stage approach to qualitative sampling within a mixed methods evaluation: Some reflections on purpose and process. Canadian Journal of Program Evaluation, 36(3), 355-364. https://doi.org/10.3138/cjpe.71237
- Reen, F. J., Jump, O., McEvoy, G., McSharry, B. P., Morgan, J., Murphy, D., O’Leary, N., O’Mahony, B., Scallan, M., Walsh, C., & Supple, B. (2024). Student informed development of virtual reality simulations for teaching and learning in the molecular sciences. Journal of Biological Education. https://doi.org/10.1080/00219266.2024.2386250
- Rehatschek, H., Hammer, N., & Schrangl, T. (2024). A use cases driven design of a virtual anatomy. In M. E. Auer, U. R. Cukierman, E. Vendrell Vidal, & E. Tovar Caro (Eds.), Towards a hybrid, flexible and socially engaged higher education. ICL 2023. Lecture notes in networks and systems, vol 900 (pp. 11-22). Springer. https://doi.org/10.1007/978-3-031-52667-1_2
- Robledo, D. A. R., Miguel, F. F., Arizala-Pillar, G., Errabo, D. D., Cajimat, R., Aguja, S. E., & Prudente, M. S. (2023). Students’ knowledge gains, self-efficacy, perceived level of engagement, and perceptions with regard to home-based biology experiments (HBEs). Journal of Turkish Science Education, 20(1), 84-118. https://doi.org/10.36681/tused.2023.006
- Rüdian, S., & Pinkwart, N. (2019). Towards an automatic Q&A generation for online courses–A pipeline based approach. In S. Isotani, E. Millán, A. Ogan, P. Hastings, B. McLaren, & R. Luckin (Eds.), Proceedings of the 20th International Conference on Artificial Intelligence in Education (pp. 237-241). ACM. https://doi.org/10.1007/978-3-030-23207-8_44
- Safitri, D., Zubaidah, S., Gofur, A., & Lestari, S. R. (2024). Mobile augmented reality genetics to improve students’ mastery of genetic concepts. TEM Journal, 13(2), Article 1399. https://doi.org/10.18421/TEM132-54
- Sahu, T., Narad, D., Javvaji, N. K. C., & Radhapuram, S. C. T. (2024). Location based portable 5G enabled Internet of things IoT EDGE device to measure, monitor and manage environment sensor data. In Proceedings of the 2024 5th International Conference on Computing, Networks and Internet of Things (pp. 436-442). ACM. https://doi.org/10.1145/3670105.3670178
- Sampaio-Maia, B., Maia, J. S., Leitão, S., Amaral, M., & Vieira-Marques, P. (2014). Wiki as a tool for Microbiology teaching, learning and assessment. European Journal of Dental Education, 18(2), 91-97. https://doi.org/10.1111/eje.12061
- Schleicher, A. (2015). Schools for 21st-century learners: Strong leaders, confident teachers, innovative approaches. OECD Publishing. https://doi.org/10.1787/9789264231191-en
- Schmitz, M.-L., Antonietti, C., Consoli, T., Cattaneo, A., Gonon, P., & Petko, D. (2023). Transformational leadership for technology integration in schools: Empowering teachers to use technology in a more demanding way. Computers and Education, 204, Article 104880. https://doi.org/10.1016/j.compedu.2023.104880
- Schoenenberger, C.-A., Korkut, S., Jaeger, J., & Dornberger, R. (2016). BioTourney: Gamifying a biology class by applying a content-independent learning game framework. In Proceedings of the European Conference on Games-Based Learning (pp. 575-583).
- Seers, K. (2015). Qualitative systematic reviews: Their importance for our understanding of research relevant to pain. British Journal of Pain, 9(1), 36-40. https://doi.org/10.1177/2049463714549777
- Selivanov, V. V, & Sorochinsky, P. V. (2021). Mechanisms and regularities of influence of educational virtual reality on human thinking. Experimental Psychology, 14(1), 29-39. https://doi.org/10.17759/exppsy.2021000003
- Shambare, B., & Jita, T. (2024). TPACK: A descriptive study of science teachers’ integration of the virtual laboratory in rural school teaching. Cogent Education, 11(1), Article 2365110. https://doi.org/10.1080/2331186X.2024.2365110
- Situmorang, R. P., Suwono, H., Susanto, H., Chang, C.-Y., & Liu, S.-Y. (2024). Learn biology using digital game-based learning: A systematic literature review. Eurasia Journal of Mathematics, Science and Technology Education, 20(6), em2459. https://doi.org/10.29333/EJMSTE/14658
- Sledzieski, S., Kshirsagar, M., Baek, M., Dodhia, R., Lavista Ferres, J., & Berger, B. (2024). Democratizing protein language models with parameter-efficient fine-tuning. PNAS, 121(26), Article e2405840121. https://doi.org/10.1073/pnas.2405840121
- Sultana, A., Zeng, L., Wang, M., Cernova, S., Cang, X., Gnesdilow, D., Bakogeorge, A., Tibu, T., Tarun, A. P., Puntambekar, S., Tissenbaum, M., & Mazalek, A. (2024). A plant simulation tool for collaborative biology experiments in middle-school classrooms: An in-the-wild study. In Proceedings of the 50th Graphics Interface Conference (pp. 1-12). ACM. https://doi.org/10.1145/3670947.3670970
- Tangaro, M. A., Mandreoli, P., Chiara, M., Donvito, G., Antonacci, M., Parisi, A., Bianco, A., Romano, A., Bianchi, D. M., Cangelosi, D., Uva, P., Molineris, I., Nosi, V., Calogero, R. A., Alessandri, L., Pedrini, E., Mordenti, M., Bonetti, E., Sangiorgi, L., … Zambelli, F. (2021). Laniakea@ReCaS: Exploring the potential of customisable galaxy on-demand instances as a cloud-based service. BMC Bioinformatics, 22, Article 544. https://doi.org/10.1186/s12859-021-04401-3
- Toh, T. J., & Tasir, Z. (2024). The impact of a mobile learning application on students’ cognitive load and learning performance in biology. Journal of Information Technology Education: Research, 23, Article 026. https://doi.org/10.28945/5380
- Tokatlidis, C., Tselegkaridis, S., Rapti, S., Sapounidis, T., & Papakostas, D. (2024). Hands-on and virtual laboratories in electronic circuits learning–Knowledge and skills acquisition. Information, 15(11), Article 672. https://doi.org/10.3390/info15110672
- Tsimba, G., Mugoniwa, B., & Mutembedza, A. N. (2022). Equitable access to eLearning during COVID-19 pandemic and beyond. A comparative analysis between rural and urban schools in Zimbabwe. In Proceedings of the 2022 IST-Africa Conference (pp. 1-8). IEEE. https://doi.org/10.23919/IST-Africa56635.2022.9845566
- Unger, S., Rollins, M., & Dyer, N. (2023). The predator-prey game: Revisiting industrial melanism and optimal foraging theory outdoors with biology undergraduates. Eurasian Journal of Science and Environmental Education, 3(2), 67-74. https://doi.org/10.30935/ejsee/13511
- Usak, M. (2024). Artificial intelligence in biology education. Journal of Baltic Science Education, 23(5), 806-808. https://doi.org/10.33225/jbse/24.23.806
- Uto, M., & Uchida, Y. (2020). Automated short-answer grading using deep neural networks and item response theory. In I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Millán, E. (Eds.), Artificial intelligence in education. AIED 2020. Lecture notes in computer science (vol 12164, pp. 334-339). Springer. https://doi.org/10.1007/978-3-030-52240-7_61
- Wabwire, J. (2024). The technological transformation of social science education: An overview. IGI Global. https://doi.org/10.4018/979-8-3693-1666-5.ch007
- Xiao, Y., & Watson, M. (2019). Guidance on conducting a systematic literature review. Journal of Planning Education and Research, 39(1), 93-112. https://doi.org/10.1177/0739456X17723971
- Zaatar, M. T., Masri, N., Alfahel, M., Antar, G., Dayal, A., Khamis, H., Kuruvani, M., & Kachaamy, G. (2024). Exploring the virtual frontier: The impact of virtual reality on undergraduate biology education at the American University in Dubai. International Journal of Information and Education Technology, 14(5), 675-680. https://doi.org/10.18178/ijiet.2024.14.5.2092
- Zhang, J. (2022). Influence of the affordance of online learning platform technology on the entrepreneurial behaviors of students in engineering and technology universities. International Journal of Emerging Technologies in Learning, 17(22), 202-215. https://doi.org/10.3991/ijet.v17i22.35361
- Zhang, Y., Yan, T., Wang, Y., & Li, Q. (2024). Marine environment dynamic monitoring system under remote sensing ecological index. In Proceedings of the 2nd International Conference on Integrated Circuits and Communication Systems (pp. 1-5). IEEE. https://doi.org/10.1109/ICICACS60521.2024.10498897
- Zhou, W., Liu, L., Pu, C., Zhu, T., Wang, Q., Xiang, W., & Yao, S. (2017). An experimental study of a biosequence big data analysis service. In Proceedings - 2017 IEEE 24th International Conference on Web Services, ICWS 2017 (pp. 237–244). https://doi.org/10.1109/ICWS.2017.38
- Zulfiani, Z., Suwarna, I. P., & Miranto, S. (2021). Improving students’ academic achievement using the ScEd-ALS android-based. International Journal of Instruction, 14(2), 735-756. https://doi.org/10.29333/iji.2021.14241a
How to cite this article
APA
Nurdin, A. M., Gofur, A., Sapta Sari, M., & Munzil (2025). Technology-supported differentiated biology education: Trends, methods, content, and impacts. Eurasia Journal of Mathematics, Science and Technology Education, 21(3), em2598. https://doi.org/10.29333/ejmste/16044
Vancouver
Nurdin AM, Gofur A, Sapta Sari M, Munzil. Technology-supported differentiated biology education: Trends, methods, content, and impacts. EURASIA J Math Sci Tech Ed. 2025;21(3):em2598. https://doi.org/10.29333/ejmste/16044
AMA
Nurdin AM, Gofur A, Sapta Sari M, Munzil. Technology-supported differentiated biology education: Trends, methods, content, and impacts. EURASIA J Math Sci Tech Ed. 2025;21(3), em2598. https://doi.org/10.29333/ejmste/16044
Chicago
Nurdin, Afrizal Mammaliang, Abdul Gofur, Murni Sapta Sari, and Munzil. "Technology-supported differentiated biology education: Trends, methods, content, and impacts". Eurasia Journal of Mathematics, Science and Technology Education 2025 21 no. 3 (2025): em2598. https://doi.org/10.29333/ejmste/16044
Harvard
Nurdin, A. M., Gofur, A., Sapta Sari, M., and Munzil (2025). Technology-supported differentiated biology education: Trends, methods, content, and impacts. Eurasia Journal of Mathematics, Science and Technology Education, 21(3), em2598. https://doi.org/10.29333/ejmste/16044
MLA
Nurdin, Afrizal Mammaliang et al. "Technology-supported differentiated biology education: Trends, methods, content, and impacts". Eurasia Journal of Mathematics, Science and Technology Education, vol. 21, no. 3, 2025, em2598. https://doi.org/10.29333/ejmste/16044