Abstract
The research aim is made a literature review on research focused on networking of theories developed in mathematics education field with several mathematical concepts. On the other hand, to illustrate what a networking of theories consists of, a synthesis of an articulation between the extended theory of connections (ETC) and the onto-semiotic approach (OSA) was presented using the study of the mathematical connections built by a university student on the derivative concept as an example. A qualitative study was developed in two stages: (1) Three phases were followed: search for information in various search engines and databases (ERIC, Google Scholar, etc.), organization and analysis of the documentation, finding works on articulation of theories focused on various mathematical concepts such as derivative. (2) A synthesis of the theoretical articulation ETC-OSA is presented, emphasizing the analysis of an episode over the derivative. It is concluded that the research reviewed on the articulation of theories about a certain phenomenon or teaching of content represents an important contribution to improving its understanding. In addition, this research provides a theoretical input or detailed panorama of background organized chronologically so that the community interested in this research line can use it for future studies.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Review Article
EURASIA J Math Sci Tech Ed, Volume 18, Issue 11, November 2022, Article No: em2179
https://doi.org/10.29333/ejmste/12513
Publication date: 06 Oct 2022
Article Views: 2006
Article Downloads: 1417
Open Access References How to cite this articleReferences
- Amaya, T. (2020). Evaluación de la faceta epistémica del conocimiento didáctico-matemático de futuros profesores de matemáticas en el desarrollo de una clase utilizando funciones [Evaluation of the epistemic facet of the didactic-mathematical knowledge of future mathematics teachers in the development of a class using functions]. Bolema: Mathematics Education Bulletin, 34, 110-131. https://doi.org/10.1590/1980-4415v34n66a06
- Arenas-Peñaloza, J. A., & Rodríguez-Vásquez, F. M. (2021). Enseñanza y aprendizaje del concepto fracción en la educación primaria: Estado del arte [Teaching and learning of the fraction number concept in elementary school: State of the art]. Cultura Educación Sociedad [Culture Education Society], 12(2), 49. https://doi.org/10.17981/cultedusoc.12.2.2021.03
- Artigue, M. (1995). La enseñanza de los principios del cálculo: Problemas epistemológicos, cognitivos y didáctico [Teaching the principles of calculus: Epistemological, cognitive, and didactic problems]. In P. Gómez (Ed.), Ingeniería didáctica en educación matemática [Didactic engineering in mathematics education] (pp. 97-140). Grupo Editorial Iberoamericano.
- Artigue, M., & Bosch, M. (2014). Reflection on networking through the praxeological lens. In A. Bikner-Ahsbahs, & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 249-265). Springer. https://doi.org/10.1007/978-3-319-05389-9_15
- Artigue, M., & Mariotti, M. A. (2014). Networking theoretical frames: The ReMath enterprise. Educational Studies in Mathematics, 85, 329-355. https://doi.org/10.1007/s10649-013-9522-2
- Artigue, M., Haspekian, M., & Corblin-Lenfant, A. (2014). Introduction to the theory of didactical situations (TDS). In A. Bikner-Ahsbahs, & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 47-65). Springer. https://doi.org/10.1007/978-3-319-05389-9_4
- Arzarello, F., & Olivero, F. (2006). Theories and empirical researches: Towards a common framework. In Proceedings of the 4th Conference of the European Society for Research in Mathematics Education (pp. 1305-1315).
- Arzarello, F., & Sabena, C. (2014). Introduction to the approach of action, production, and communication (APC). In A. Bikner-Ahsbahs, & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 31-45). Springer. https://doi.org/10.5565/rev/ec/v29n2.546
- Badillo, E. R., Azcárate, C., & Font, V. (2011). Análisis de los niveles de comprensión de los objetos f’(a) y f’(x) en profesores de matemáticas [Analysis of the levels of understanding of the objects f’(a) and f’(x) in mathematics teachers]. Enseñanza de las Ciencias [Science Education], 29(2), 191-206. https://doi.org/10.5565/rev/ec/v29n2.546
- Bikner-Ahsbahs, A. (2016). Networking of theories in the tradition of TME. In Theories in and of mathematics education (pp. 33-42). Springer. https://doi.org/10.1007/978-3-319-42589-4_5
- Bikner-Ahsbahs, A. (2022). Adaptive teaching of covariational reasoning: Networking “the way of being” on two layers. The Journal of Mathematical Behavior, 67, 100967. https://doi.org/10.1016/j.jmathb.2022.100967
- Bikner-Ahsbahs, A., & Halverscheid, S. (2014). Introduction to the theory of interest-dense situations (IDS). In A. Bikner-Ahsbahs, & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 97-113). Springer. https://doi.org/10.1007/978-3-319-05389-9_7
- Bikner-Ahsbahs, A., & Prediger, S. (2010). Networking theories—An approach for exploiting the diversity of theoretical approaches. In B. Sriraman, & L. English (Eds.), Theories of mathematics education (pp. 589-592). Springer. https://doi.org/10.1007/978-3-642-00742-2_46
- Bikner-Ahsbahs, A., & Prediger, S. (Eds.). (2014). Networking of theories as a research practice in mathematics education. Springer. https://doi.org/10.1007/978-3-319-05389-9
- Bikner-Ahsbahs, A., & Vohns, A. (2019). Theories of and in mathematics education. In H. N. Jahnke, & L. Hefendehl-Hebeker (Eds.), Traditions in German-speaking mathematics education research (pp. 171-200). Springer. https://doi.org/10.1007/978-3-030-11069-7_7
- Bikner-Ahsbahs, A., Artigue, M., & Haspekian, M. (2014). Topaze effect: A case study on networking of IDS and TDS. In A. Bikner-Ahsbahs, & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 201-221). Springer. https://doi.org/10.1007/978-3-319-05389-9_12
- Boero, P., Dreyfus, T., Gravemeijer, K., Gray, E., Hershkowitz, R., Schwarz, B., Sierpinska, A., & Tall, D. (2002). Abstraction: Theories about the emergence of knowledge structures. In A. Cockburn, & E. Nardi (Eds.), Proceedings of the 26th International Conference on the Psychology of Mathematics Education (pp. 111-138). East Anglia University/PME.
- Borji, V., Erfani, H., & Font, V. (2019). A combined application of APOS and OSA to explore undergraduate students’ understanding of polar coordinates. International Journal of Mathematical Education in Science and Technology, 51(3), 405-423. https://doi.org/10.1080/0020739X.2019.1578904
- Borji, V., Font, V., Alamolhodaei, H., & Sánchez, A. (2018). Application of the complementarities of two theories, APOS and OSA, for the analysis of the university students’ understanding on the graph of the function and its derivative. EURASIA Journal of Mathematics, Science and Technology Education, 14(6), 2301-2315. https://doi.org/10.29333/ejmste/89514
- Bosch, M., & Gascón, J. (2014). Introduction to the anthropological theory of the didactic (ATD). In A. Bikner-Ahsbahs, & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 67-83). Springer. https://doi.org/10.1007/978-3-319-05389-9_5
- Bosch, M., Gascón, J., & Trigueros, M. (2017). Dialogue between theories interpreted as research praxeologies: The case of APOS and the ATD. Educational Studies in Mathematics, 95(1), 39-52. https://doi.org/10.1007/s10649-016-9734-3
- Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa
- Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections [Unpublished PhD thesis]. Simon Fraser University.
- Campo-Meneses, K. G., Font, V., García-García, J., & Sánchez, A. (2021). Mathematical connections activated in high school students’ practice solving tasks on the exponential and logarithmic functions. EURASIA Journal of Mathematics, Science and Technology Education, 17(9), em1998. https://doi.org/10.29333/ejmste/11126
- Campo-Meneses, K., & García-García, J. (2020). Explorando las conexiones matemáticas asociadas a la función exponencial y logarítmica en estudiantes universitarios colombianos [Exploring the mathematical connections associated with the exponential and logarithmic function in Colombian university students]. Revista Educación Matemática [Mathematics Education Magazine], 32(3), 209-240. https://doi.org/10.24844/em3203.08
- De Gamboa, G., Badillo, E., Couso, D., & Márquez, C. (2021). Connecting mathematics and science in primary school STEM education: Modeling the population growth of species. Mathematics, 9(19), 2496. https://doi.org/10.3390/math9192496
- De Gamboa, G., Badillo, E., Ribeiro, M., Montes, M., & Sánchez-Matamoros, G. (2020). The role of teachers’ knowledge in the use of learning opportunities triggered by mathematical connections. In S. Zehetmeier, D. Potari, & M. Ribeiro (Eds.), Professional development and knowledge of mathematics teachers (pp. 24-43). Routledge. https://doi.org/10.4324/9781003008460-3
- De la Fuente, A., & Deulofeu, J. D. (2022). Uso de las conexiones entre representaciones por parte del profesor en la construcción del lenguaje algebraico [Use of connections between representations by the teacher in the construction of algebraic language]. Bolema: Mathematics Education Bulletin, 36, 389-410. https://doi.org/10.1590/1980-4415v36n72a17
- Dolores-Flores, C., & García-García, J. (2017). Conexiones intramatemáticas y extramatemáticas que se producen al resolver problemas de cálculo en contexto: Un estudio de casos en el nivel superior [Intra-mathematical and extra-mathematical connections that occur when solving calculus problems in context: A case study at the higher level]. Bolema: Mathematics Education Bulletin, 31(57), 158-180. https://doi.org/10.1590/1980-4415v31n57a08
- Dolores-Flores, C., & Ibáñez-Dolores, G. (2020). Conceptualizaciones de la pendiente en libros de texto de matemáticas [Slope conceptualizations in mathematics textbooks]. Bolema: Mathematics Education Bulletin, 34, 825-846. https://doi.org/10.1590/1980-4415v34n67a22
- Dolores-Flores, C., Rivera-López, M. I., & García-García, J. (2019). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematics Education in Science and Technology, 50(3), 369-389. https://doi.org/10.1080/0020739X.2018.1507050
- Dreyfus, T., & Kidron, I. (2014). Introduction to abstraction in context (AiC). In A. Bikner-Ahsbahs, & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 85-96). Springer. https://doi.org/10.1007/978-3-319-05389-9_6
- Dreyfus, T., Sabena, C., Kidron, I., & Arzarello, F. (2014). The epistemic role of gestures: A case study on networking of APC and AiC. In A. Bikner-Ahsbahs, & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 127-151). Springer. https://doi.org/10.1007/978-3-319-05389-9_9
- Drijvers, P., Godino, J. D., Font, V., & Trouche, L. (2013). One episode, two lenses. Educational Studies in Mathematics, 82(1), 23-49. https://doi.org/10.1007/s10649-012-9416-8
- Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2011). Exploring mathematical connections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23(3), 297-319. https://doi.org/10.1007/s13394-011-0017-0
- Evitts, T. (2004). Investigating the mathematical connections that preservice teachers use and develop while solving problems from reform curricula [Unpublished doctoral dissertation]. Pennsylvania State University.
- Feudel, F., & Biehler, R. (2021). Students’ understanding of the derivative concept in the context of mathematics for economics. Journal für Mathematik-Didaktik [Journal for Mathematics Didactics], 42(1), 273-305. https://doi.org/10.1007/s13138-020-00174-z
- Fonger, N. L., & Altindis, N. (2019). Meaningful mathematics: Networking theories on multiple representations and quantitative reasoning. In Proceedings of the 41st Annual Meeting of PME-NA (pp. 1176-1786).
- Font, V. (2000). Procediments per obtenir expressions simbòliques a partir de gràfiques: Aplicacions a les derivades [Procedures for obtaining symbolic expressions from graphs: Applications in relation to the derivative] [Unpublished doctoral dissertation]. University of Barcelona.
- Font, V. (2007). Una perspectiva ontosemiótica sobre cuatro instrumentos de conocimiento que comparten un aire de familia: Particular/general, representación, metáfora y context [An ontosemiotic perspective on four instruments of knowledge that share a family resemblance: Particular/general, representation, metaphor, and context]. Educación Matemática [Mathematics Education], 19(2), 95-128.
- Font, V. (2016). Coordinación de teorías en educación matemática: El caso del enfoque ontosemiótico [Coordination of theories in mathematics education: The case of the ontosemiotic approach]. Perspectivas da Educação Matemática [Perspectives on Mathematics Education], 9(20), 256-277.
- Font, V., & Contreras, A. (2008). The problem of the particular and its relation to the general in mathematics education. Educational Studies in Mathematics, 69, 33-52. https://doi.org/10.1007/s10649-008-9123-7
- Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97-124. https://doi.org/10.1007/s10649-012-9411-0
- Font, V., Malaspina, U., Gimenez, J., & Wilhelmi, M. (2011). Mathematical objects through the lens of three different theoretical perspectives. In Proceedings of The VII Congress of The European Society for Research in Mathematics Education (pp. 2411-2420). University of Rzeszow.
- Font, V., Trigueros, M., Badillo, E., & Rubio, N. (2016). Mathematical objects through the lens of two different theoretical perspectives: APOS and OSA. Educational Studies in Mathematics, 91(1), 107-122. https://doi.org/10.1007/s10649-015-9639-6
- Fuentealba, C., Badillo, E., & Sánchez-Matamoros, G. (2018a). Puntos de no-derivabilidad de una función y su importancia en la comprensión del concepto de derivada [Points of non-derivability of a function and its importance in understanding the concept of derivative]. Educação e Pesquisa [Education and Research], 44, 1-20. https://doi.org/10.1590/s1678-4634201844181974
- Fuentealba, C., Badillo, E., Sánchez-Matamoros, G., & Cárcamo, A. (2018b). The understanding of the derivative concept in higher education. EURASIA Journal of Mathematics, Science and Technology Education, 15(2), em1662. https://doi.org/10.29333/ejmste/100640
- Fuentealba, C., Sánchez-Matamoros, G., & Badillo, E. (2015). Análisis de tareas que pueden promover el desarrollo de la comprensión de la derivada [Analysis of tasks that can promote the development of understanding of the derivative]. Uno: Revista de Didáctica de las Matemáticas [One: Journal of Didactics of Mathematics], 71, 72-78.
- Galindo-Illanes, M. K., Breda, A., Chamorro Manríquez, D. D., & Alvarado Martínez, H. A. (2022). Analysis of a teaching learning process of the derivative with the use of ICT oriented to engineering students in Chile. EURASIA Journal of Mathematics, Science and Technology Education, 18(7), em2130. https://doi.org/10.29333/ejmste/12162
- García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. https://doi.org/10.1080/0020739X.2017.1355994
- García-García, J., & Dolores-Flores, C. (2019). Pre-university students’ mathematical connections when sketching the graph of derivative and antiderivative functions. Mathematics Education Research Journal, 33, 1-22. https://doi.org/10.1007/s13394-019-00286-x
- García-García, J., & Dolores-Flores, C. (2021). Exploring pre-university students’ mathematical connections when solving calculus application problems. International Journal of Mathematical Education in Science and Technology, 52(6), 921-936. https://doi.org/10.1080/0020739X.2020.1729429
- Godino, J. D., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos [Institutional and personal meaning of mathematical objects]. Recherches en didactique des Mathématiques [Research in Didactics of Mathematics], 14(3), 325-355.
- Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM-The International Journal on Mathematics Education, 39(1-2), 127-135. https://doi.org/10.1007/s11858-006-0004-1
- Godino, J. D., Batanero, C., & Font, V. (2019). The onto-semiotic approach: Implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 37-42.
- Godino, J. D., Beltrán-Pellicer, P., & Burgos, M. (2020). Concordancias y complementariedades entre la teoría de la objetivación y el enfoque ontosemiótico [Concordances and complementarities between the theory of objectivation and the ontosemiotic approach]. RECME-Revista Colombiana de Matemática Educativa [RECME-Colombian Journal of Educational Mathematics], 5(2), 51-66.
- Gómez-Luna, E., Fernando-Navas, D., Aponte-Mayor, G., & Betancourt-Buitrago, L. (2014). Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización [Methodology for bibliographic review and information management of scientific topics, through its structuring and systematization]. Dyna, 81(184), 158-163. https://doi.org/10.15446/dyna.v81n184.37066
- Haghjoo, S., & Reyhani, E. (2021). Undergraduate basic sciences and engineering students’ understanding of the concept of derivative. Journal of Research and Advances in Mathematics Education, 6(4), 277-298. https://doi.org/10.23917/jramathedu.v6i4.14093
- Hidayat, R., Adnan, M., & Abdullah, M. F. N. L. (2022). A systematic literature review of measurement of mathematical modeling in mathematics education context. EURASIA Journal of Mathematics, Science and Technology Education, 18(5), em2108. https://doi.org/10.29333/ejmste/12007
- Husamah, H., Suwono, H., Nur, H., & Dharmawan, A. (2022). Sustainable development research in EURASIA Journal of Mathematics, Science and Technology Education: A systematic literature review. EURASIA Journal of Mathematics, Science and Technology Education, 18(5), em2103. https://doi.org/10.29333/ejmste/11965
- Ikram, M., Purwanto, P., Parta, I. N., & Susanto, H. (2020). Mathematical reasoning required when students seek the original graph from a derivative graph. Acta Scientiae [Journal of Science], 22(6), 45-64. https://doi.org/10.17648/acta.scientiae.5933
- Julius, R., Abd Halim, M. S., Hadi, N. A., Alias, A. N., Khalid, M. H. M., Mahfodz, Z., & Ramli, F. F. (2021). Bibliometric analysis of research in mathematics education using Scopus database. EURASIA Journal of Mathematics, Science and Technology Education, 17(12), em2040. https://doi.org/10.29333/ejmste/11329
- Kidron, I., & Bikner-Ahsbahs, A. (2015). Advancing research by means of the networking of theories. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative methods in mathematics education–Examples of methodology and methods (pp. 221-232). Springer. https://doi.org/10.1007/978-94-017-9181-6_9
- Kidron, I., & Monaghan, J. (2012). Complexity of dialogue between theories: Difficulties and benefits. In Proceedings of the 12th International Congress on Mathematical Education (pp. 7078-7084). COEX.
- Kidron, I., Artigue, M., Bosch, M., Dreyfus, T., & Haspekian, M. (2014). Context, milieu, and media-milieus dialectic: A case study on networking of AiC, TDS, and ATD. In A. Bikner-Ahsbahs, & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 153-177). Springer. https://doi.org/10.1007/978-3-319-05389-9_10
- Ledezma, C., Font, V., & Sala, G. (2022). Analyzing the mathematical activity in a modelling process from the cognitive and onto-semiotic perspectives. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-022-00411-3
- Lucena Rodgríguez, C., Mula-Falcón, J., Segovia, J. D., & Cruz-González, C. (2021). The effects of COVID-19 on science education: A thematic review of international research. Journal of Turkish Science Education, 18, 26-46.
- National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics.
- Nemirovsky, R., & Rubin, A. (1992). Students’ tendency to assume resemblances between a function and its derivatives. TERC. https://eric.ed.gov/?id=ED351193
- Niss, M. (2007). Reflections on the state and trends in research on mathematics teaching and learning: From here to utopia. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1293-1311). Information Age Publishing.
- Nurwahyu, B., Tinungki, G. M., & Mustangin. (2020). Students’ concept image and its impact on reasoning towards the concept of the derivative. European Journal of Educational Research, 9(4), 1723-1734. https://doi.org/10.12973/eujer.9.4.1723
- Oehrtman, M. C., Carlson, M. P., & Thompson, P. W. (2008). Foundational reasoning ability that promotes coherence in students’ function understanding. In M. P. Carlson, & C. Rasmussen (Eds), Making the connection: Research and practice in undergraduate mathematics (pp. 150-171). Mathematical Association of America. https://doi.org/10.5948/UPO9780883859759.004
- Pabón-Navarro, M. L., Rodríguez-Nieto, C. A., & Povea-Araque, A. M. (2022). Ethnomathematical connections in bricks making in Salamina-Magdalena, Colombia, and geometric treatment with GeoGebra. Turkish Journal of Computer and Mathematics Education, 13(03), 257-273.
- Pino-Fan, L. R., Godino, J. D., & Font, V. (2015). Una propuesta para el análisis de las prácticas matemáticas de futuros profesores sobre derivadas [A proposal for the analysis of the mathematical practices of future teachers on derivatives]. Bolema. Mathematics Education Bulletin, 29(51), 60-89. https://doi.org/10.1590/1980-4415v29n51a04
- Pino-Fan, L. R., Godino, J. D., & Font, V. (2018). Assessing key epistemic features of didactic mathematical knowledge of prospective teachers: The case of the derivative. Journal of Mathematics Teacher Education, 21, 63-94. https://doi.org/10.1007/s10857-016-9349-8
- Pino-Fan, L. R., Guzmán, I., Font, V., & Duval, R. (2017). Analysis of the underlying cognitive activity in the resolution of a task on derivability of the absolute-value function: Two theoretical perspectives. PNA, 11(2), 97-124. https://doi.org/10.30827/pna.v11i2.6076
- Prediger, S., & Bikner-Ahsbahs, A. (2014). Introduction to networking: Networking strategies and their background. In A. Bikner-Ahsbahs, & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 117-125). Springer. https://doi.org/10.1007/978-3-319-05389-9_8
- Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connection theoretical approaches: First steps towards a conceptual framework. ZDM-The International Journal on Mathematics Education, 40(2), 165-178. https://doi.org/10.1007/s11858-008-0086-z
- Radford, L. (2008). Connecting theories in mathematics education: Challenges and possibilities. ZDM-The International Journal on Mathematics Education, 40, 317-327. https://doi.org/10.1007/s11858-008-0090-3
- Rodríguez-Nieto, C. A. (2021). Conexiones etnomatemáticas entre conceptos geométricos en la elaboración de las tortillas de Chilpancingo, México [Ethnomatematical connections between geometric concepts in the making of tortillas from Chilpancingo, Mexico]. Revista de Investigación Desarrollo e Innovación [Journal of Research, Development and Innovation], 11(2), 273-296. https://doi.org/10.19053/20278306.v11.n2.2021.12756
- Rodríguez-Nieto, C. A., & Alsina, Á. (2022). Networking between ethnomathematics, STEAM education, and the globalized approach to analyze mathematical connections in daily practices. EURASIA Journal of Mathematics Science and Technology Education, 18(3), 2-22. https://doi.org/10.29333/ejmste/11710
- Rodríguez-Nieto, C. A., Font, V., Borji, V., & Rodríguez-Vásquez, F. M. (2021a). Mathematical connections from a networking theory between extended theory of mathematical connections and onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, 53(9), 2364-2390. https://doi.org/10.1080/0020739X.2020.1799254
- Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & Font, V. (2022). A new view about connections: the mathematical connections established by a teacher when teaching the derivative. International Journal of Mathematical Education in Science and Technology, 53(6), 1231-1256. https://doi.org/10.1080/0020739X.2020.1799254
- Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & García-García, J. (2021c). Exploring university Mexican students’ quality of intra-mathematical connections when solving tasks about derivative concept. EURASIA Journal of Mathematics, Science and Technology Education, 17(9), em2006. https://doi.org/10.29333/ejmste/11160
- Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & García-García, J. (2021d). Pre-service mathematics teachers’ mathematical connections in the context of problem-solving about the derivative. Turkish Journal of Computer and Mathematics Education, 12(1), 202-220. https://doi.org/10.16949/turkbilmat.797182
- Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., Font, V. & Morales-Carballo, A. (2021b). Una visión desde el networking TAC-EOS sobre el papel de las conexiones matemáticas en la comprensión de la derivada [A view from the TAC-EOS network on the role of mathematical connections in understanding the derivative]. Revemop [Revop], 3, e202115, 1-32. https://doi.org/10.33532/revemop.e202115
- Sabena, C., Arzarello, F., Bikner-Ahsbahs, A., & Schäfer, I. (2014). The epistemological gap: A case study on networking of APC and IDS. In A. Bikner-Ahsbahs, & S. Prediger (Eds.), Networking of Theories as a Research Practice in Mathematics Education (pp. 179-200). Springer. https://doi.org/10.1007/978-3-319-05389-9_11
- Sánchez-Matamoros, G., Fernández, C., & Llinares, S. (2015). Developing pre-service teachers’ noticing of students’ understanding of the derivative concept. International Journal of Science and Mathematics Education, 13(6), 1305-1329. https://doi.org/10.1007/s10763-014-9544-y
- Sibgatullin, I. R., Korzhuev, A. V., Khairullina, E. R., Sadykova, A. R., Baturina, R. V., & Chauzova, V. (2022). A systematic review on algebraic thinking in education. EURASIA Journal of Mathematics, Science and Technology Education, 18(1), em2065. https://doi.org/10.29333/ejmste/11486
- Tabach, M., Rasmussen, C., Dreyfus, T., & Apkarian, N. (2020). Towards an argumentative grammar for networking: A case of coordinating two approaches. Educational Studies in Mathematics, 103, 139-155. https://doi.org/10.1007/s10649-020-09934-7
- Thanheiser, E., Melhuish, K., Sugimoto, A., Rosencrans, B., & Heaton, R. (2021). Networking frameworks: a method for analyzing the complexities of classroom cultures focusing on justifying. Educational Studies in Mathematics, 107, 285-314. https://doi.org/10.1007/s10649-021-10026-3
- Ukobizaba, F., Nizeyimana, G., & Mukuka, A. (2021). Assessment strategies for enhancing students’ mathematical problem-solving skills: A review of literature. EURASIA Journal of Mathematics, Science and Technology Education, 17(3), em1945. https://doi.org/10.29333/ejmste/9728
- Vargas, M. F., Fernández-Plaza, J. A., & Ruiz-Hidalgo, J. F. (2020). Significado de derivada en las tareas de los libros de 1° de Bachillerato [Meaning of derivative in the book tasks of 1st of “Bachillerato”]. Bolema: Mathematics Education Bulletin, 34, 911-933. https://doi.org/10.1590/1980-4415v34n68a04
- Vergel, R., Godino, J. D., Font, V., & Pantano, Ó. L. (2021). Comparing the views of the theory of objectification and the onto-semiotic approach on the school algebra nature and learning. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-021-00400-y
- Yavuz-Mumcu, H. (2018). Matematiksel ilişkilendirme becerisinin kuramsal boyutta incelenmesi: Türev kavramı örneği [Examining the mathematical association skill in the theoretical dimension: An example of the concept of derivative]. Turkish Journal of Computer and Mathematics Education, 9(2), 211-248. https://doi.org/10.16949/turkbilmat.379891
How to cite this article
APA
Rodríguez-Nieto, C. A., Moll, V. F., & Rodríguez-Vásquez, F. M. (2022). Literature review on networking of theories developed in mathematics education context. Eurasia Journal of Mathematics, Science and Technology Education, 18(11), em2179. https://doi.org/10.29333/ejmste/12513
Vancouver
Rodríguez-Nieto CA, Moll VF, Rodríguez-Vásquez FM. Literature review on networking of theories developed in mathematics education context. EURASIA J Math Sci Tech Ed. 2022;18(11):em2179. https://doi.org/10.29333/ejmste/12513
AMA
Rodríguez-Nieto CA, Moll VF, Rodríguez-Vásquez FM. Literature review on networking of theories developed in mathematics education context. EURASIA J Math Sci Tech Ed. 2022;18(11), em2179. https://doi.org/10.29333/ejmste/12513
Chicago
Rodríguez-Nieto, Camilo Andrés, Vicenç Font Moll, and Flor Monserrat Rodríguez-Vásquez. "Literature review on networking of theories developed in mathematics education context". Eurasia Journal of Mathematics, Science and Technology Education 2022 18 no. 11 (2022): em2179. https://doi.org/10.29333/ejmste/12513
Harvard
Rodríguez-Nieto, C. A., Moll, V. F., and Rodríguez-Vásquez, F. M. (2022). Literature review on networking of theories developed in mathematics education context. Eurasia Journal of Mathematics, Science and Technology Education, 18(11), em2179. https://doi.org/10.29333/ejmste/12513
MLA
Rodríguez-Nieto, Camilo Andrés et al. "Literature review on networking of theories developed in mathematics education context". Eurasia Journal of Mathematics, Science and Technology Education, vol. 18, no. 11, 2022, em2179. https://doi.org/10.29333/ejmste/12513