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Abstract 

In calculus, students can integrate functions that require procedures or algorithmic rules, but they 

grapple with contextual problems involving real-life motion of physical bodies. When 

undergraduate students learn the application of integration, they are expected to comprehend 

the concept of integration and apply it to optimization. This study used the action-process-object-

schema (APOS) theory to determine undergraduate students’ construction of the application of 

integral calculus to kinematics. This study was qualitative and involved a case study of 150 

secondary mathematics students registered for a Bachelor of Education degree at a university in 

South Africa. Data were collected through a written test by all the students and semi-structured 

interviews with eight students. The eight students were selected purposively, and the interview 

questions were meant to clarify some of the responses raised in the test. The content analysis of 

the written responses was done to reveal the stages of students’ concept development of 

kinematics. The findings revealed that students had significant challenges performing second- 

and third-level integration. These involve substituting the initial conditions at least once to find 

the constant integration for each level. Furthermore, students’ connection with displacement, 

velocity and acceleration concepts was weak, coupled with their failure to consider the point when 

the object was momentarily at rest. 
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INTRODUCTION 

Calculus is a branch of mathematics that is concerned 
with limits, differentiation and integration of functions. 
Undergraduate mathematics education students 
encounter integral calculus in their second year of study 
in South Africa. This comes after having done limits and 
differential calculus in the last year of high school and 
first-year undergraduate. Integration focuses on the 
determination of the anti-derivatives and their 
application to functions of a diverse nature. 
Determination of integrals is achieved conceptually by 
means of definite integrals (as area under the graph and 
Riemann sums) or as a process by means of indefinite 
integrals (calculating anti-derivatives) (Hogstad & 
Isabwe, 2017). Definite and indefinite integrals are 
essential in calculus as they form the basis for many real-
life problems commonly encountered in physics, 
engineering, biology and economics. The contextual 

problems constitute the application of integration, which 
comprise volumes of revolutions, centroids, rates of 
change, moments of inertia, pressure, total costs and so 
on (Ferrer, 2016).  

To understand integration, students need to have 
pre-requisite topics like trigonometry, algebra, analytic 
geometry, limits, differentiation and continuity. Integral 
calculus is a gateway to advanced mathematics courses 
such as vector calculus, differential equations, 
multivariate calculus, complex and real analysis. In 
calculus, students frequently encounter integration more 
than limits or differentiation (Jones, 2013). When 
undergraduate students learn the application of 
integration, they are expected to comprehend the 
concept of integration and make connections between 
particular constructs within integration. As integration 
is a continuance of differential calculus which was 
covered in the previous year, the focus was on 
instantaneous rates of change which require students to 
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integrate functions and plug in boundaries conditions to 
find displacement or velocity. In the application of 
derivatives, students were differentiating to find 
acceleration or velocity. While physics majors may resort 
to equations of motion to solve kinematics problems, 
mathematics majors are required to construct 
knowledge in differentiating and integrating given 
functions to obtain unknown quantities in motion in one 
dimension.  

Integration is a valuable topic which serves as the 
basis for diverse real-world applications (Jones, 2013). In 
learning integral calculus, undergraduate students are 
expected to construct mental structures that enable them 
to solve problems in the application of integral calculus 
to motion in one dimension. The organized structure of 
knowledge is what Skemp (1962) termed schema, and to 
understand something means to assimilate it into an 
appropriate schema. In integral calculus, students are 
exposed to the rules, procedures and algorithmic 
formula for standard functions, for example, the u-
substitution, integration by parts, the power rule, partial 
fractions, and logarithmic and trigonometric 
substitutions. Students might be fluent in performing 
symbolic techniques of integration, but may lack the 
conceptual understanding thereof, which becomes a 
stumbling block when they try to apply integration to 
real-world problems (Nguyen & Rebello, 2011). 
Thompson and Harel (2021) corroborate that students 
can evaluate integrals but cannot relate their 
computations to other contexts.  

Students grappling with contextual problems 
involving the real-life motion of physical bodies stems 
from their limited knowledge of the concept of rates of 
change (Kouropatov & Dreyfus, 2014). Students’ 
challenges in kinematics are related to the usage of 
formulas and understanding the problem. Kinematics is 
defined as the relationship between the position of a 
particle and its motion without considering the forces 
acting on the particle (Taqwa et al., 2022). Very few 
studies report on specific difficulties that constrain 
undergraduate students’ success when solving 
kinematics problems on integration (Zulu et al., 2021). 
Therefore, this study sought to explore how 
undergraduate students constructed their knowledge 
and understanding of the application of integral calculus 
in motion in one dimension. The research question was. 

“What are undergraduate students’ understanding of 
the application of integral calculus in kinematics?” In 
other words, what mental structures do students operate 
when they conceptualize the application of integral 
calculus to kinematics?  

LITERATURE REVIEW 

Integral calculus has been an object of study by 
mathematics educators for a long time at the 
undergraduate level. A thorough search revealed that 
most studies in integral calculus are conducted at the 
undergraduate level in most countries. The exception 
was two studies by Kouropatov and Dreyfus (2013, 
2014), which in either case investigated high school 
students’ construction of the concept of integration as a 
totality of small parts. The first category of studies on 
integral calculus involved a quest for using theory to 
understand students’ mastery of the techniques of 
integration. A study by Brijlall and Ndlazi (2019) used 
activity sheets and follow-up interviews to explore 30 
first-year engineering students’ understanding of 
techniques of integration in South Africa. The study was 
structured on the action-process-object-schema (APOS) 
theory. The findings established that students exhibited 
procedural tendencies in evaluating integrals, but their 
conceptual understanding of integrals was shaky. The 
students could not define definite and indefinite 
integrals. In another study, Ndlazi and Brijlall (2018) 
sought to explore engineering students’ understanding 
of the techniques of integration by using the three worlds 
of mathematics framework. Tasks on integration were 
administered and followed by open-ended interviews. 
The findings suggested that students only attained the 
lowest of the three worlds, namely, the 
conceptual/embodied. The previous studies relate to 
this study in the sense of using established theories to 
investigate undergraduate students’ conceptualization 
of integration. This study goes further by investigating 
students’ understanding of the application of 
integration, in addition to the techniques of integration. 

In another study on the techniques of integration by 
Ferrer (2016), students encountered challenges with 
certain functions, for example, trigonometric functions. 
The students’ difficulties in evaluating integrals were 
attributed to these challenges. After analyzing students’ 
responses to an examination and probing in open-ended 

Contribution to the literature 

• This study revealed the stages of students’ concept development in the application of integration to 
kinematics and identified the associated errors at each stage.  

• The findings demonstrated that students had significant challenges in performing second- and third-level 
integration, which involved substituting the initial conditions at least once to find the constant of 
integration for each level.  

• The students’ understanding of displacement, velocity and acceleration concepts was weak, coupled with 
their failure to consider the point when the object was momentarily at rest. 
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interviews, the findings showed that students’ lack of 
basic mathematics knowledge muffled their attainment 
in integration. Kiat (2005) posited that structural errors 
were the largest, which signify students’ lack of specific 
mathematics content. The study by Kiat (2005) also 
indicated that students had difficulties with questions 
that involved trigonometric functions, and students 
seemed to focus more on the procedural aspects of 
integration rather than the conceptual. Insights from 
these studies informed this study to investigate 
undergraduate students’ challenges in grasping the 
techniques of integration as they unfold in the 
application of integration. 

Social sciences students’ concept images and 
definitions of anti-derivatives were the objective of a 
study by Moru and Qhobela (2019) in Lesotho. In that 
study, data were collected through responses to a task-
sheet on evaluating anti-derivatives given to students. 
Interviews were also conducted to further clarify 
students’ written responses and the concept image and 
concept definition theory was used as lens to analyze 
data. The findings confirmed that students’ concept 
images of anti-derivatives in the integration of algebraic 
expressions were coherent, but some students still had 
challenges with the integration method to use in solving 
problems.  

Similarly, Serhan (2015) conducted a study to 
investigate 25 undergraduate calculus students’ 
procedural and conceptual knowledge in definite 
integrals. After administering a test, written responses 
highlighted that students were dominant in procedural 
knowledge relative to conceptual knowledge. Their 
conceptual understanding of definite integrals was 
limited, and they could not represent the concept in 
other contexts. Thus, literature indicates that integration 
is a concern to mathematics educators as students 
grapple with it. 

The second category of studies in integral calculus 
focuses on students’ understanding of the application of 
integration into kinematics. Frequently, students master 
the appropriate methods of integration but fail to 
establish a connection to apply that knowledge to real-
world problems as commonly found in engineering and 
sciences. Jones (2015) asserts that students’ 
understanding of definite integrals was insufficient to 
help them make sense of contextualized integrals. In that 
study, students had a clear understanding of the area 
under the graph as a definite integral. However, this 
could not help much since many applications in 
integration do not make use of this property. In light of 
this, this study takes a furtherance of the quest to find a 
connection between knowledge of integration and its 
application in contextual problems.  

Some of the studies on kinematics were conducted 
with physics students since it is one of their topics too. 
Nevertheless, Nguyen and Rebello (2011) sought how 

physics students understood and applied the area-
under-the-graph concept in solving introductory physics 
problems. Very few students could realize that the 
concept was applicable to physics problems and in some 
cases, it could not be applied to novel situations. Sundari 
et al. (2023) probed students’ understanding of 
kinematics in a study wherein a survey of 129 physics 
students was conducted. After responding to a written 
test, it was discovered that students struggled to solve 
problems in kinematics, especially those that required 
identifying motion through a graph. In a similar study, 
Taqwa et al. (2022) inquired into the effectiveness of 
using diagram-based motion to improve students’ 
conceptual understanding of kinematics. After 
administering a multiple-choice task to an experimental 
group of 36 physics students, Taqwa et al. (2022) showed 
that the use of diagrams can enhance conceptual 
understanding of one-dimensional motion.  

However, many students remained with difficulties 
in determining instantaneous velocity based on the 
displacement-time graph. In kinematics, many 
assumptions need to be formulated in the process of 
learning displacement, velocity and acceleration. This 
pertains to the direction of motion and boundary values. 
Taqwa and Rivaldo (2018) established that a sample of 
48 physics students harbored wrong assumptions 
regarding the displacement function 𝑥(𝑡) and assumed 
that the negative value of acceleration denotes the 
particle is slowing down. The studies above have strong 
implications for the current study since about a third of 
the participants in this study were physics education 
majors. These students cover kinematics in both physics 
and mathematics. 

Under the APOS theory, the goal of instructors is to 
assist students in attaining higher levels of mental 
structures in understanding a mathematical concept. 
Undergraduate students in a study by Maharaj (2014) 
only attained the action conception which saw them 
being able to perform step-by-step integration when the 
integration is explicit. However, they had difficulties 
applying the rules of integration and the method to use 
is implied due to unattained higher levels of process and 
object mental structures.  

This literature review overview points to the 
following: integral calculus is dominantly offered in 
undergraduate studies; written tasks in the form of tests, 
tasks and examinations are used determine the level of 
students’ conceptualization of integration and its 
application; open-ended interviews are also commonly 
used as a follow-up to written tasks to clarify further the 
written responses; analysis of data is done through the 
lenses of mathematics-related theories; and exploring 
undergraduate students levels of attainment in 
mathematical concepts informs the development of 
appropriate didactics when teaching integration in 
higher education.  
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THEORY 

In research, a theoretical framework essentially gives 
structure to a study and is useful in data analysis. To 
understand how students develop knowledge of 
mathematical concepts, the APOS theory was used. 
APOS theory was developed by Dubinsky in 1985 
(Arnon et al., 2014). It was developed as part of an effort 
to understand how mathematics is learned. It tries to 
understand how students construct different 
mathematical concepts and suggests pedagogic actions 
that can stimulate the learning process. According to 
APOS theory, an individual deals with a mathematical 
situation by using certain mental mechanisms to build 
cognitive structures that are applied to the problem 
situation (Dubinsky et al., 2005). Mental construction in 
the APOS framework implies that there are differences 
in everyone’s description of each stage. This can be 
influenced by the thinking and ability of each individual. 
The novelty of this framework lies in the students’ 
mental constructions through detailed explanations at 
each stage in the APOS framework on the application of 
integration concepts. Hence, this study describes 
students’ mental construction of the application of 
integration concepts based on differences in 
mathematical ability. This research contributes to 
guidance for educators in improving students’ 
understanding. 

An APOS inquiry starts with the researcher 
performing a theoretical analysis of the mathematical 
concept concerned using his expertise as a mathematics 
education researcher and instructor. The purpose of the 
theoretical analysis of a concept is to propose a 
description of specific mental constructions that 
students might require to develop their understanding 
of the concept. This theoretical analysis is also called 
genetic decomposition (GD). An action is an externally 
motivated transformation of previously conceived 

objects. Each step of the transformation must be 
performed overtly and guided by external and ordered 
instructions (Arnon et al., 2014). An action forms the 
crucial beginning of understanding a mathematical idea. 
Hence, this learning-theory-based pedagogical approach 
begins with activities designed to help students 
construct action conceptions. Actions transform into 
processes when they are reflected upon and repeated. 
An individual moves from relying on external cues to 
having internal control over transformations. At this 
level, students can work in reverse and skip some steps 
or perform the steps mentally. When a student 
encapsulates a process, an object is formed in the mind 
of the student. At the object level, the student’s focus 
moves away from the mathematical concept as a 
dynamic transformation into a static entity upon which 
further actions and processes can take place. Finally, a 
schema is an individual’s coherent collection of actions, 
processes, objects, and other related schemas which form 
a framework in the individual’s mind that may be 
brought to bear upon a problem situation involving that 
concept (Asiala et al., 1996). While this structure 
describes how an individual may construct a single 
transformation, a mathematical concept often involves 
many actions, processes and objects that need to be 
organized and linked into a coherent framework, which 
is called a schema. It is coherent in the sense that it 
provides an individual with a way of deciding which 
mental structures to use in dealing with a mathematical 
problem situation. 

A GD was used in this study to develop pedagogical 
knowledge and settings. The GD also explains the 
students’ expected performances that indicate 
differences in the development of their constructions in 
a specific concept. The GD for the application of 
integration in kinematics is shown in Table 1. 

Table 1. The genetic decomposition of the application of integration in kinematics 

Mental structure Constructs in kinematics 

Action Given any function, an individual is expected to evaluate the indefinite using one of the integration 
techniques. The individual does every step learnt in class (Brijlall & Ndlazi, 2013) in the solution 
process of a given mathematical problem. 

Process Interiorize indefinite integrals to definite integrals where integration is the area under the curve in 
𝑢𝑛𝑖𝑡𝑠2. An individual can integrate transcendental functions where the area goes up to infinity where 
applicable. An individual can find the function whose derivative yields given integrands by working 
in reverse, guided by the Fundamental Theorem of Calculus. Students perceive the application of 
integration to kinematics, solids of revolution, centroids and others by applying limits of integration 
to get output. 

Object Perceives kinematics in totality and considers the direction of motion to find unknown quantities. 
Given acceleration, an individual can perform repeated integrations to evaluate velocity and 
displacement by using appropriate initial and final conditions. The individual carries out 
action/process transformations to find time and velocity when the particle is momentarily at rest. An 
individual realizes that the area under the acceleration-time graph is velocity and the area under the 
velocity-time graph is displacement. 

Schema Given any problem, an individual can identify the appropriate application and solve the problem 
using the correct technique of integration. An individual considers the assumptions of kinematics to 
solve a given problem. 
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METHODOLOGY 

This qualitative study was conducted at a public 
university in South Africa as an explorative case study 
design. A case of 150 second-year undergraduate 
students studying towards an education degree 
participated in the study. In APOS theory, the next phase 
after the theoretical analysis and development of GD is 
the implementation of instruction in accordance with the 
hypothesis in the GD. The implementation of instruction 
provides an opportunity for the collection and analysis 
of data, which is carried out using the theoretical lens of 
APOS theory (Asiala et al., 1996). The concept of 
integration was taught using traditional instruction, and 
APOS theory was used as an analytical evaluative tool in 
this study (Dubinsky et al., 2013). Only one problem with 
three items was selected from the end-of-unit test that 
was written by all the students. The item was used to 
identify and analyze the students’ understanding of 
kinematics at all stages of APOS theory.  

The problem under consideration was, as follows:  

A particle 𝑃 is moving on the 𝑥-axis and its acceleration 
𝑎 𝑚/𝑠2, 𝑡 seconds after a given instant, is given by 𝑎(𝑡) =
8 − 2𝑡 for 𝑡 ≥ 0. Initially, 𝑃 is on the positive 𝑥-axis 84 m 
away from the origin 𝑂, and is moving towards 𝑂 with a speed 
of 7 𝑚/𝑠.  

(1) Find an expression for the velocity of 𝑃.  

(2) Determine the times when 𝑃 is instantaneously at rest.  

(3) Show that when 𝑡 = 12 , 𝑃 is passing through 𝑂.  

Action conception is required to execute step-by-step 
integration of the polynomial two times. In some cases, 
students performed the integration mentally or skipped 
some steps as evidence of their process skills. Further 
process skills were manifested when students used the 
initial conditions to find the value of the constant of 
integration for both the 𝑣(𝑡) and 𝑥(𝑡) expressions. The 
object conception in this item centers on the need to 
assign signs based on the direction of the particle and 
show that displacement is zero at 𝑡 = 12. Students 
applied action/process skills to this object by 
substituting 𝑡 = 12 in the just-obtained displacement 
expression. The test item was a fairly standard question 
on kinematics, and they were analyzed in traditional 
grading ways. The responses were graded on 
appropriate scales from incorrect to correct with partial 
crediting in-between. The frequencies of the scores were 
captured.  

The written responses were used to design semi-
structured interview questions where students might be 
asked to explain what was written or whether they 
wished to revise any of the responses (Arnon et al., 2014). 
A group of eight students was purposively selected for 
the follow-up interviews; three were from the wrong 
responses category (K15, K65, and K98), three from the 
partially correct responses (K3, K38, and K148) and two 
from the correct responses category (K3 and K19). The 

interviews were held to clarify further the selected 
students’ responses and the possible reasons for those 
responses (Maharaj, 2014). The interviews were audio-
tapped and transcribed by the researcher and the 
transcripts complemented the students’ written 
responses from the test. The written responses and 
transcriptions were analyzed by categorizing the data 
into themes and the classification of errors to explore 
undergraduate students’ understanding of the 
application of integration in kinematics. Orton (1983) 
identified three types of student errors, namely, 
structural, executive and arbitrary. The structural error 
arises from the failure of a student to grasp the principle 
necessary for the solution. Kiat (2005) regarded this error 
as conceptual. An executive error (or a procedural error) 
is one which involves failure to carry out algorithms 
despite having understood the concept involved in the 
problem. Finally, an arbitrary error, also called a 
technical error, refers to an error due to carelessness or 
failure to consider the constraints laid down in the 
question.  

FINDINGS 

After data collection, analysis of data was done 
through the lens of the APOS theory to ascertain those 
students attained the mental structures called for in the 
GD and how well they achieved them (Arnon et al., 
2014). The frequencies of students’ performance are 
displayed in Table 2. 

Of concern is the record of students who did not 
provide responses to the three items, which was about 
23%. This task was part of the students’ formative 
assessment; hence, there was no obvious reason students 
had to skip the questions other than the difficulties in 
understanding the concept of kinematics. For item (3), 
the skip rate was higher at about 41%. The sum of 
incorrect responses provided by the students stood at 
207, which was relatively high for all three items. In item 
(2) only, much more than half of the students provided 
incorrect responses. Partially correct answers were most 
common for item (1) relative to the other types of 
responses. Out of the combined responses of 450, only 24 
were correct, representing 5%. Item (3) was the least 
performed, with only two students providing perfectly 
correct responses. The performance of the students was 
negatively skewed, a testament to students’ difficulties 
in the application of integral calculus to kinematics.  

Table 2. The frequencies of students’ constructions of 
knowledge in the test 

Type of response/item (1) (2) (3) Total 

Blank (B) 18 25 62 105 
Wrong (W) 44 99 64 207 
Partially correct (P) 77 15 22 114 
Correct (C) 11 11 2 24 
Total 150 150 150 450 
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Item (1) Analysis 

Only eleven students successfully solved this item, 
which required students to integrate the polynomial 
once and find the constant of integration using the given 
initial conditions. Figure 1 illustrates the correct 
solution. 

The integration of the given polynomial was 
standard, but the initial conditions needed careful 
consideration. Participants like K19 managed both the 
integration and initial speed. Other than these eleven, 
the other students encountered challenges in their 
attempts. The P-category participants had some 
evidence of attempts to integrate the polynomial, but the 
process was flawed. Of the 77 students in the category of 
P, 40 integrated the polynomial but did not include the 
constant of integration. As a result, they had no use of 
the initial condition of a velocity of 7 meters per second 
(illustrated in Figure 2). 

A follow-up interview with K38 revealed that it was 
a procedural error. R stands for the researcher in the 
dialogue.  

R: What do you get when you integrate 
acceleration? 

K38: I get velocity, as you can see there. 

R: Do you think the integration on the right-hand 
side is correct? 

K38: Yes. I don’t see any problem with it. 

R: Have you ever heard of a constant of 
integration, and under what circumstances do you 
apply it? 

K38: Whenever we perform indefinite integration. 
Which was not the case here, Sir. 

R: Are you sure? 

K38: Oh, I see. Even indefinite integrals do have a 
constant initial, which can be evaluated using 
initial conditions. I am supposed to have a 𝑐. 

K38 was also unsure of indefinite integrals in relation 
to application problems. The constant of integration is 
part of the procedure, which is replaced by the initial 
values in the case of application problems. A further 
eight students integrated and appended the constant of 
integration 𝑐 but then did not go on to evaluate it. They 
did not use the given initial velocity. Twenty-one 
students attempted to evaluate the 𝑐 but obtained 7 
instead of the expected -7. Figure 3 illustrates K95’s 
response. 

The remaining eight participants in this category did 
the correct integration of the polynomial but also made 
mistakes on the value of 𝑐, whereby diverse values of c 
were obtained. For instance, three students got 𝑐 = 84 
after using the initial condition of 84 meters. They 
disregarded the fact that 84 meters was the initial 
displacement of the particle, which was used in a 
velocity function. 

In the W category, four students tried to integrate the 
acceleration function to get the velocity function, but 
they failed to do so. Figure 4 illustrates K26’s response 
which shows flawed integration. The constant value 8 
was dropped. 

In the same category, K149 integrated and obtained 
𝑣(𝑡) = 8 − 𝑡2 + 𝑐. Thus, after substituting the initial 
velocity of 7 𝑚/𝑠, the final velocity function was 𝑣(𝑡) =
7 − 𝑡2. Two participants, K44 and K50, attempted to 
integrate but used the formula for arc length and 
volumes of revolutions, respectively. The rest of the 
students in this category did not apply the idea of 
integration in their attempts to solve the problem. Three 
students utilized the equations of motion to find velocity 

 
Figure 1. Correct solution to item (1) by K19 (Source: 
Authors’ own elaboration) 

 
Figure 2. Absence of a constant of integration by K38 
(Source: Authors’ own elaboration) 

 
Figure 3. Solution with c = 7 by K95 (Source: Authors’ own 
elaboration) 

 
Figure 4. An incorrect attempt to integrate (Source: 
Authors’ own elaboration) 
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functions. For example, K19 incorporated 𝑣𝑓 = 𝑣𝑖 + 𝑎∆𝑡 

while K98 used 𝑣 = 2𝑎 + 𝑎𝑡 but their resultant functions 
were incorrect. The latter formula is unknown in the 
equations of motion found in physics.  

Figure 5 illustrates K19’s response. 

To find out more about the application of equations 
of motion, an interview was arranged with K98.  

R: Why did you use the equations of motion? 

K98: Because I want to find the final speed. 

R: Ok, but where did you use the idea of 
optimization? 

K98: I did not because we do it this way in physics. 

R: What comes to your mind when acceleration is 
given as a function? 

K98: I-I 

R: Optimization translates to the point when the 

object is momentarily at rest.  

K98: But this works for us in physics.  

R: It is only possible if acceleration is constant, but 
it is linear here. 

K98: Thank you, Sir. I never saw it that.  

The dialogue shows that equations of motion are not 
applicable for instantaneous acceleration and velocity.  

Instead of integrating, some students chose to 
differentiate the acceleration function to the expression 
for velocity. To some students, velocity is the first 
derivative, without realizing that it is also the first 
integral of acceleration. K15 responded this way: 𝑣 = 𝑎’ 
then 𝑎’ = −2. In the interview, K15 responded that he 
was not sure whether he had to integrate or differentiate. 
K133 adopted the idea of differentiation but did not 
actually perform it (shown in Figure 6). 

Some students had a mix-up of the displacement, 
velocity and acceleration concepts. K62 had an idea that 
it is the displacement function which is supposed to be 

differentiated. Hence, he applied 𝑣 =
∆𝑥

𝑑𝑡
. This was 

simplified further to 7 =
84

𝑡
, giving rise to 𝑡 = 12 seconds. 

However, the question required the velocity function. 

Similarly, students like K4 had the dilemma of ending 
up with the value of time instead of the velocity by 
solving the equation involving velocity: 7 = 8 − 2𝑡. K38 
also solved this way. 

Item (2) Analysis 

In this item, students were expected to note that when 
the particle was momentarily at rest, then the velocity 
was zero. Having obtained the correct expression for 
velocity in part (1), only eleven of them also went ahead 
and computed the correct values for 𝑡 when 𝑣 = 0. 
Figure 7 illustrates a correct solution by K3. 

However, 26 students thought that momentarily at 
rest meant the time when acceleration was zero. They 
tried to find 𝑡 by solving the 8 − 2𝑡 = 0, as shown in 
Figure 8. 

Another five students solved for 𝑡 by saying 8 − 2𝑡 =

7. This was a mix-up because acceleration on one side 
cannot equal initial velocity to the other. The dialogue 
with K3 is shown below: 

R: What does momentarily at rest mean? 

K3: Acceleration is zero. 

R: Are you sure? 

K3: Oh no. We say 𝑣 = 0. I made a mistake. 

 
Figure 5. Use of the equations of motion (Source: Authors’ 
own elaboration) 

 
Figure 6. Acceleration is conceived as a derivative of 
velocity (Source: Authors’ own elaboration) 

 
Figure 7. Correct values of 𝑡 when the particle is at rest 
(Source: Authors’ own elaboration) 

 
Figure 8. Equating acceleration to zero by K133 (Source: 
Authors’ own elaboration) 
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Nine participants thought of using displacement and 

velocity to find time. After solving 7 =
84

𝑡
, they got 𝑡 =

12, as shown in Figure 9. However, no optimization is 
involved if solved this way. It is average velocity which 
they calculated. Students like K38 disregarded the fact 
that when the particle was at rest, 𝑣(𝑡) = 0. In the same 
line of reasoning, three participants evaluated 
𝑣(0) instead of 𝑣(𝑡) = 0, as shown in Figure 10.  

The value of the constant in 𝑣(𝑡) is also incorrect. 
When asked why he calculated the value of initial 
velocity 𝑣(0), he said he thought 𝑣(0) is the required 
solution when the particle is momentarily at rest. 

Finally, some students thought of using the numbers 
given in the question in one way or another but without 
understanding. For example, six students computed 
𝑎(12) but then used the acceleration function as: 𝑎(12) =

2 − 8(12). However, 12 seconds was meant for the item 
(iii) on displacement. Also, two students tried to solve 
the equation 𝑥(𝑡) = 0 to find the time when the particle 
was at rest. The equation 𝑥(𝑡) was obtained by first 
integrating the velocity function. However, that 
complicated the problem because it meant solving a 
cubic equation. 

About 20 participants faltered in finding the accurate 
time values simply because the velocity expression from 
(1) was incorrect. They equated the faulty expression for 
velocity appropriately to zero as illustrated in Figure 11. 
The velocity expression only lacked constant integration. 

The participants would have obtained the correct 
solutions if not for the faulty equation. Solving quadratic 
equations is something which second-year students can 
easily do. Similarly, some students had difficulties 
solving the equation because they had obtained other 
values of the constant of integration other than 𝑐 = −7. 

Thirteen students used 8𝑡 − 𝑡2 + 7 = 0, but then they 
had difficulties solving it since it had no factors. Some 
had 𝑐 = 55 and 𝑐 = 84. As a result, the correct values for 
time could not be found. Having determined the correct 
equation for 𝑣(𝑡), six students were unsuccessful at 
solving the ensuing equation 8𝑡 − 𝑡2 − 7 = 0. It was a 
matter of failing to solve the quadratic equation, which 
is often addressed in junior high school. Upon inquiry in 
the interview, K148 responded that she got mixed up 
with the negative signs but could solve any quadratic 
with or without integer solutions.  

Item (3) Analysis 

The participants’ performance in this item was not 
good. Firstly, the frequency of students who skipped this 
item was at least 41%. These students made no attempts 
to answer this item. On the other hand, there were only 
two participants who scored fully on this subject. K19 
correctly does the expected solution in Figure 12. 

The students were expected to integrate the velocity 
function from (1), consider the initial conditions and 
then show that 𝑥(12) was equal to zero. Displacement 
was zero meters because the particle moved towards its 
origin. Fifteen participants attempted to integrate the 
function but did not include the constant of integration 
in the 𝑣(𝑡) expression, as shown in Figure 13. 

The error of omitting the constant of integration 
happened more than once in K49. Six students integrated 
the function and got 𝑘 = 84 but did not go ahead to find 
𝑥(12), as shown in Figure 14. 

In another instance, one participant performed the 
integration perfectly but failed to evaluate the constant 

 
Figure 9. Using displacement and velocity to find time by 
K38 (Source: Authors’ own elaboration) 

 
Figure 10. Evaluating 𝑣(0) instead of 𝑣(𝑡) = 0 by K55 
(Source: Authors’ own elaboration) 

 
Figure 11. Use of incorrect expression for velocity by K29 
(Source: Authors’ own elaboration) 

 
Figure 12. The expected solution in (3) (Source: Authors’ 
own elaboration) 

 
Figure 13. An otherwise correct integration but lacking the 
constant of integration by K49 (Source: Authors’ own 
elaboration) 
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of integration; hence, evaluating 𝑥(12) could not be 
possible (as shown in Figure 15).  

A further four participants integrated 𝑣(𝑡) well but 
then got the wrong value for the constant of integration. 
Consequently, verifying that displacement is zero when 
𝑡 = 12 seconds could not be attained. To some students, 
it was a carry-over error emanating from the wrong 
constant of integration for the velocity expression. This 
was unavoidable, and the final answer for 𝑥(12) could 
not be determined.  

Arbitrary errors led to incorrect final answers for 
some students. K14 was on track until he wrote 𝑘 = 8 
instead of the just-obtained 𝑘 = 84; hence, she could not 
confirm 𝑥(12) = 0 (shown in Figure 16). 

Participants in the category of Wrong answers either 
did not perform integration, or if they did, they carried 
it out wrongly. At least 43% of the students got this item 
wrong. Eight participants failed to integrate the 
polynomial of velocity to get displacement, as shown in 
Figure 17. This was a technical error, as they all were 

expected to know how to integrate the quadratic 
polynomial. 

The expression of 𝑥(𝑡) by K55 is missing a constant 
term; hence, his 𝑥(12) could not yield a zero as expected. 
This was a result of the wrong integration process of the 
polynomial. Five participants did not integrate the 
polynomial despite attempts to do so. K149’s work 
illustrates this point in Figure 18. 

Another case of failure to integrate was seen in the 
work of K26, K137, K105, and K105, who computed 
displacement at 𝑡 = 12 seconds by substituting into the 
acceleration expression. Four other students also solved 
the problem this way. Thus, they all obtained 𝑃 = 8 −

2(12) = −16 meters. Lack of integration was also seen in 
the work of eleven students who calculated time using 
84

7
, which had no connection to the demands of the 

question. Three students used the equations of motion 

but to no avail. Some participants also considered 
84

12
, but 

it does not apply when displacement is given as a 

function. K115 applied ∆𝑥 = 𝑣𝑖∆𝑡 +
1

2
𝑎∆𝑡2 while the rest 

used 𝑣 = 𝑢 + 𝑎𝑡. At the least, the former is related to 
displacement, while the latter is not. Finally, K65 
decided to adopt the formula for the volume of 

revolution and wrote 𝜋 ∫ (8 − 2(12))284

0
. Upon further 

inquiry, K65 replied that he was not sure of the question 
and, at the same time, he did not want to leave the item 
unanswered. Thus, he came up with the idea of volumes 
of revolution, which he also doubted. More so, the 
integrand is a constant value with a dubious origin. 

DISCUSSION AND CONCLUSION 

Based on the frequencies in Table 1, about 23% of the 
students operated at the pre-action stage in all the items 
(Kazunga & Bansilal, 2017). Santos (2019) asserts that 
students’ level of mathematical performance correlates 
with the levels of understanding they attain as they solve 
a task. Even the APOS theory provides a framework to 
organize students’ thinking as a mathematical concept 
(Langi et al., 2023). Hence, without attempting to solve a 
problem, categorizing students’ knowledge construction 
in a particular concept is inapplicable. The blank 
responses cannot even be classified under the error-
types of Orton (1983). For that to be possible, at least 
some sort of attempt must be made.  

Teaching and research results have shown that 
developing an object conception for a concept is difficult 

 
Figure 14. Incomplete solution lacking the value of 𝑥(12) 
(Source: Authors’ own elaboration) 

 
Figure 15. A correct integrand but without the value of 𝑐 by 
K45 (Source: Authors’ own elaboration) 

 
Figure 16. An arbitrary error spoiling the final part of the 
solution (Source: Authors’ own elaboration) 

 
Figure 17. Failure to fully integrate the polynomial correctly 
by K55 (Source: Authors’ own elaboration) 

 
Figure 18. No attempts to integrate (Source: Authors’ own 
elaboration) 
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and takes a long time (Arnon et al., 2014; Asiala et al., 
1998; Trigueros & Martínez-Planell, 2010). Hence, results 
showed that for all the three items, only 5% attained the 
object level. Students in this study could not adequately 
go beyond performing procedures and explaining the 
steps required to accomplish the application of 
integration. According to Borji and Font (2019, p. 13), 
students should be able to “know the reason for using 
any technique and concept and know where, and when, 
and for what they have to use each of them”. Only two 
students managed to reason and justify the causes for the 
steps they took to evaluate the displacement. According 
to the GD, this mental construction represents the object 
conception of the application of integration to 
kinematics.  

Besides the students who skipped the questions and 
solved the kinematics problem correctly, 72% committed 
diverse errors in their attempts. Thus, it seemed 
appropriate to classify the types of errors made by 
students using Orton (1983). The integration of 
polynomials is straightforward and requires action and 
process skills mainly. However, most students did not 
attain that. Structural errors were observed in students’ 
responses categorized as wrong for both (1) and (3), 
whereby no attempts to integrate the polynomials were 
seen. For example, some students used equations of 
motion, while others differentiated instead of 
integrating. It happens that students often confuse 
integration with differentiation, as the former also relies 
on derivatives (Kiat, 2005). Ferrer (2016) posits that 
students confuse and interchange the formulae for 
integration and differentiation only when 
transcendental functions are involved. Hence, Taqwa et 
al. (2022) note that velocity is difficult for students to 
understand. Depending on what is provided first, 
velocity can be a result of differentiation or integration if 
given displacement and acceleration, respectively. In 
cases where integration was contemplated, other 
formulae were applied, for example, arc length and 
solids of revolution. In problems that contain some 
numbers, students sometimes try to use the formulas 
which come to their minds (Taqwa et al., 2021). Under 
structural errors, students’ difficulties were in 
recognizing that integration was needed to solve for 
velocity and differentiation (Khan et al., 2012). Kiat 
(2005) reports that students are better at integrating 
polynomial functions relative to transcendental 
functions.  

In calculus, integration has a dual nature, as an 
antiderivative requiring the use of integration 
techniques and as a calculation tool in application 
problems (Maharaj, 2014). This compound nature of 
integration led to a proliferation of executive errors for 
the students who were in the partially-correct category. 
The greatest challenge was omitting the constant 
integration in both the velocity and displacement 
expressions and their proportions were 40% and 17%, 

respectively. Langi et al. (2023) reveal that often, 
students do not know the meaning of the constants they 
write on the integration results. This challenge 
represented an executive error whereby students 
understood the rules for integrating polynomials but 
failed to carry out all the steps (Maharaj, 2014). Moru and 
Qhobela (2019) say a procedural error is committed if a 
constant of integration is omitted on the one hand, while 
there is a possibility of a technical error if the students 
just forget to write the 𝑐 on the other hand. It also meant 
the action and process skills were present but not robust. 
Despite making some attempts to include the constant of 
integration, 16 students did not evaluate it, and those 
who did attempt got it wrong.  

In item (2), nearly half of the students failed to equate 
the velocity expression to zero, which was evidence of 
structural errors. Students were used to finding 
moments when the particle was at rest by using 𝑥’(𝑡) =

0 but this time it was ∫ 𝑎(𝑡)𝑑𝑡. In this category, some 
solved for 𝑎(𝑡) = 0, thus using the given acceleration 
function while two of them chose 𝑥(𝑡) = 0. These two 
instances blur the distinction between structural and 
executive error types; it is structural because velocity 
was not involved, but executive because students 
reckoned that an expression is equated to zero at the 
point the particle is at rest. Under executive errors, 
students were hampered from solving the homogenous 
quadratic equation mainly due to errors incurred in (1) 
concerning the constant of integration, which affected 
about 20% of the students. In such a case, the quadratic 
expression could not be factorized, and some students 
doubted the non-integer solutions they got. The 
students’ action and/or process skills were adequately 
developed despite these executive errors. Hence, 
achieving APOS mental structures does not necessarily 
depend on correct problem-solving responses.  

With regard to indefinite integrals, students might 
follow the procedures and necessary techniques of 
integration and can solve related problems without 
knowing why the methods work (Borji & Font, 2019). 
However, with application problems like kinematics, 
students must also make sense of the context and 
problem constraints. Failure to apply the initial 
conditions in kinematics leads to technical errors. 
Twenty-one students disregarded direction in the initial 
velocity and ended up with 𝑐 = +7 for (1). For (3), a 
similar number of students had challenges with initial 
displacement, which also was the value of the constant 
𝑘. Identifying the initial velocity and displacement in the 
correct perspective is a process skill. Hence, the presence 
of arbitrary errors signifies inadequate process 
conception. Kiat (2005) notes that students faltered in 
finding displacement as they did not consider the change 
in the direction of the particle. This causes students not 
to encapsulate the application of integration as efforts to 
find final velocity and displacement become futile. 
Finding the final displacement in (3) called for the object-
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level conception of kinematics, and the presence of the 
three error types in students’ responses shows a lack of 
coherence among action, process and object conceptions. 
Therefore the scheme for the application of integration 
into kinematics was not well-developed. Understanding 
a concept is constructing a plausible schema, enabling 
students to assimilate it to what they already know 
(Iwuanyanwu, 2019). Though learning integrals poses 
difficulties to students (Langi et al., 2023; Nurhayati et 
al., 2023), this study managed to delve into the specific 
aspects of integration that pose conceptual difficulties 
for students (Czarnocha et al., 2001). Maharaj (2014) 
posits that students find it difficult to evaluate integrals 
particularly if they are given in context.  

Some instructors have come to terms with students’ 
difficulties in integration and have reacted by teaching 
integration as a rule or delaying introducing integral 
calculus as late as possible (Orton, 1983).  

This study reveals the stages of students’ concept 
development in the application of integration to 
kinematics and identifies the associated errors at each 
stage. There are basically two approaches to solving 
kinematics problems. These involve instant and average 
rates of change. Physics students use equations of 
motion based on average rates of change, while 
mathematics uses calculus based on instantaneous rates 
of change. This bifurcation presents a unique challenge 
to students with a double major in mathematics and 
physics as they tend to use equations of motion in 
calculus. However, instantaneous rates of change are 
given as functions whose turning points require 
optimization to find unknown quantities. Process and 
object conceptions of kinematics are called upon to 
distinguish average and instant rates of change. To 
physics students, the structural error of using equations 
of motion in calculus is monumental. Thus, physics 
students struggle to solve kinematics problems when 
motion is represented in graphs or functions (Sundari et 
al., 2023). Average rates of change were observed in non-
physics students too, leading to these students 
computing time as displacement divided by velocity.  
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