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Abstract 

Investigating the transition between the secondary and the tertiary levels is a main theme in 

mathematics and science education. More so, this paper considers the transition that intersects 

with the after-effects of COVID-19, or the transition together with an educational context 

dominated by sociocultural differences and educational disadvantages. With this knowledge in 

mind, we investigated the effects of predictive mathematical models (multiple regression, logistic 

regression, and decision trees) to predict at-risk students at three time intervals (weeks one, three, 

and seven) in the semester. The idea was implemented with a first-year life science class of 130 

students. Variables from an academic readiness questionnaire along with early assessment grades 

were used to build these models. Through a Monte Carlo cross validation method, the 

performance of the executed predictive models was assessed, and limitations were reported. We 

argue that the results obtained from predictive models can support both lecturers and students 

in the transition phase. The idea can be expanded to other courses in STEM fields and other 

educational contexts. 

Keywords: academic readiness, at-risk students, COVID-19, life science students, predictive 

models, secondary-tertiary transition 

 

INTRODUCTION 

The education landscape has changed, perhaps 
forever, after the arrival of COVID-19, yet it is unclear 
what impact emergency remote teaching had on 
students (Engelbrecht et al., 2023). More so, in countries 
with sociocultural difficulties and pre-existing 
educational disadvantages, such as South Africa, 
emergency remote teaching could have had a greater 
impact on education (for an example from a mathematics 
education context, see Chirinda et al., 2021; and for an 
example from a first-year mathematics cohort, see 
Morton & Durandt, 2023). South Africa is a country with 
educational inequalities and numerous students enter 
the tertiary environment underprepared (see results 
from international studies, such as TIMSS by Mullis et 
al., 2020). In the post-COVID-19 era, students may face 
several challenges related to prior learning. The 
transition between education levels and the difficulties 

associated with the transition is a main theme in 
education, which was discussed long before the 
pandemic (for an example from a German context, see 
Greefrath et al., 2017; for an example from the South 
African context, see Jacobs & Pretorius, 2016).  

The current cohort of tertiary students experienced 
emergency remote teaching at the secondary level, for 
about two years. It is unclear how these students are 
experiencing the transition to university. In most tertiary 
classrooms, practices have returned to ‘normal’, whether 
to a pre-COVID-19 model or a new post-COVID-19 
model. However, some questions arise: Should teachers 
(lecturers) in the post-COVID-19 era be made aware of 
risks associated with students? Are the problems from 
the pre-COVID-19 era also present in the post-COVID-
19 era, and if so, have the characteristics of former 
problems changed? Also, what new and creative ideas 
can the research offer us to identify and address 
transition problems?  
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The transition from the secondary to the tertiary 
environment, referred to as the secondary-tertiary 
transition (STT) in the literature, has been studied for 
more than two decades and results from several studies 
have been presented at international conferences (e.g., 
PME and ICME). The term transition can be considered 
as a period of adjustment before settling into a more 
stable phase and is often associated with a period of 
change along with the capability to navigate change 
(Gale & Parker, 2014; Jansen & Van der Meer, 2012). 
Students who cannot transit may become disengaged 
and underperform in the first year of tertiary studies 
(Sun et al., 2017). For an overview of the literature since 
2008, see Di Martino et al. (2023). The STT of students in 
STEM degrees, particularly with a significant 
component of mathematics, is a concern, which is 
supported by the high dropout rates (Geisler & Rolka, 
2021). However, difficulties in transition are not only 
related to cognitive factors and specific subjects (such as 
mathematics) and can also be influenced by 
sociocultural and contextual factors, as well as 
experiences in other subjects. Recently, the affective (e.g., 
Di Martino & Gregorio, 2019; Geisler & Rolka, 2021) and 
the sociocultural (e.g., Hernandez-Martinez & Williams, 
2013; Lim et al., 2022) perspectives, together with the 
epistemological and cognitive difficulties students face, 
give a more holistic view on transition. One example 
from another subject area is Brazilian first-year nursing 
students (e.g., Rossato et al., 2024).  

The term at risk, in the academic context, refers to 
students who can be identified as having a higher chance 
of failing a course (module) and dropping out of 
university before graduation (Horton, 2015), and is 
merely the endpoint of a gradual process of 
disengagement related to several factors (Nouwen & 
Clycq, 2020). This is largely because at-risk students are 
faced with challenges and circumstances that negatively 
impact their ability to navigate through the transition 
phase (for an example from the South African context, 
see Jacobs & Pretorius, 2016), and they are more likely to 
make poor choices regarding their choice of degree, or 
other decisions that can harm their career. The at-risk 
students’ knowledge, skills, academic ability, and 
motivation are considerably lower compared to non-at-
risk students (e.g., Jacobs & Pretorius, 2016; Ribeiro et al., 
2019; Sun et al., 2017). A recent study (compare Glaesser 
et al., 2024) shows that disengagement (related to 

behavioral, affective, and cognitive aspects) is an early 
predictor of students being at risk of dropping out and 
highlights the need for educators to control classroom 
dynamics and student composition, particularly in 
classrooms with diverse student backgrounds. 
Moreover, students who experience grade retention are 
steadily more at risk (Nouwen & Clycq, 2020). It is 
widely understood that at-risk status is associated with 
first-year students, but this phenomenon was also 
reported in a third-year mathematics class where 
cognitive barriers existed (see Braatvedt & Durandt, 
2021). 

The early identification of at-risk students, 
particularly in the first year, seems important to develop 
possibilities for educators to remedy students’ academic 
deficiencies and to increase study success. Several 
methods can be used for early identification. One idea is 
a diagnostic or entrance test at the start of the course, 
which usually focuses on cognitive aspects (for an 
example from an engineering mathematics class, see 
Durandt et al., 2021). Another idea is to use 
mathematical models to identify at-risk students using 
prior students’ grades to forecast current student grades 
(for an example from a statistics class, see Van Appel & 
Durandt, 2019).  

When building predictive models, one needs to train 
a model to identify which students are likely to fail (i.e., 
at-risk students) and which are likely to pass. Ideally, we 
would want to predict students who may be at risk as 
early as possible in the first academic semester to 
provide adequate and targeted support. However, it is 
known (e.g., Granger & Jeon, 2007; Van Appel & 
Durandt, 2019) that there is a trade-off between early 
prediction and the accuracy of forecast models. This 
trade-off scenario is created when the early prediction 
(forecast) is based on limited information regarding 
students’ success rate (for example, marks or scores from 
the first week in the academic semester). This is 
compared to predicting students’ success rate later in the 
semester (for example, marks or scores at the end of 
week seven in the academic semester) when more 
accurate information is available, but this could result in 
too little time for targeted interventions to have an effect. 

The study reported here aimed to identify the effects 
of different mathematical models to predict at-risk 
students early in the academic semester. Through this 

Contribution to the literature 

• Accurately predicting at-risk students is notoriously difficult, where there is a trade-off between early 
prediction and accuracy.  

• Predicting at-risk students during the first week of the academic semester, using only the academic 
readiness questionnaire (ARQ) as a variable, provides valuable time to assist students, even with its low 
prediction accuracy. 

• Predicting at-risk students in week seven of the academic semester, using the marks of a large-scale 
continuous assessment task as a variable, is sufficiently good, but provides less time to assist students. 
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study, we intend to support the STT in a science course 
while taking into consideration that first-year students 
from a developing country might even be more at risk in 
this post-COVID-19 era. We used the example from a 
first-year life science class to demonstrate our research 
work (see later section for more information on the 
sample and why the sample was chosen). A broader aim, 
which is not particularly investigated in this study but 
can flow from the study, is to use the data generated by 
the models to design adequate support for at-risk 
students. 

The research questions are, as follows: 

1. What are suitable predictive models to improve 
the STT for life science student teachers from a 
developing country; what are the advantages and 
disadvantages? 

2. If the predictive accuracy of these models 
(identified in 1) is compared at different stages 
during the academic semester, what are the 
consequences? 

In answering these research questions, we attempt to 
address a gap in the research, particularly research 
regarding STT in a developing country in Africa, which 
is underrepresented compared to global standards (see 
Di Martino et al., 2023). The paper will report on 
theoretical aspects related to students in transition and 
the use of predictive models for educational purposes; 
the case of the first-year life science class; the selection of 
suitable predictor variables; technical aspects of the 
construction of the models; results and discussions at 
different time intervals of the academic semester; 
followed by concluding remarks and perspectives. 

THEORETICAL PERSPECTIVES 

The study has a pragmatic nature, and the following 
two theoretical perspectives informed our work:  

(1) the transition of students from the secondary to 
the tertiary level and characteristics associated 
with this process, and  

(2) the usefulness of mathematical models in the 
educational context. 

The Transition of Students from the Secondary to the 
Tertiary Level 

Research on STT includes a variety of theoretical 
frameworks and a clear evolution over time is visible 
from a purely cognitive approach (compare Tall, 2008) to 
a more holistic approach, which also includes affective 
constructs (compare Geisler, 2021).  

In this study, we investigated the effect of predictive 
models at different time intervals; thus, Nicholson’s 
(1990) transition cycle seemed a suitable theoretical 
foundation to inform the STT. This cycle was originally 
designed for transitions in the workplace, from an 
organizational behavior perspective; it is dynamic and 

can be applied to other real-life situations when a 
transition is required. Leong et al. (2021) used 
Nicholson’s cycle as a theoretical foundation in their 
study regarding educators’ perspectives on first-year 
chemistry students’ transition from the secondary to the 
tertiary level. Nicholson’s (1990) transition cycle is 
described by four stages that emphasize both the 
cognitive and the non-cognitive factors that are involved 
in student readiness: preparation, encounter, 
adjustment, and stabilization.  

A short description of the phases follows: 

1. First, the preparation phase occurs at the secondary 
level before students enter the tertiary environment 
and provides a foundation for the new tertiary 
environment. Here students should develop 
readiness, expectations, and motivation. Globally, the 
current first-year groups experienced several 
turbulences in their formal education during this 
phase, such as emergency remote teaching, and they 
might be less prepared for tertiary studies than their 
former counterparts. 

2. Second, the encounter phase is typically associated 
with the first few weeks at university when students 
make sense of the new environment, evaluate their 
ability to cope, and create new social networks. 
Typically, during this phase, students are well 
supported by university services. Not all students 
enter university with similar readiness 
characteristics, and this unequal scenario creates 
challenges for teaching. 

3. Next, the adjustment phase is associated with the 
remainder of the first year. This is the period where 
students adapt to their new environment and adopt 
the necessary behaviors to fit into the environment. 
The expectation is that students will become less 
dependent on the support services offered by the 
university and the lecturer and demonstrate more 
self-regulated habits. 

4. Last, the stabilization phase is where students are 
fully adapted to the academic context. Some authors 
refer to the ‘equilibrium’ phase when students can 
balance all aspects of the academic environment. The 
expectation is that second-year students should be in 
this phase, but that might not be the case for all 
students. According to the literature (Leong et al., 
2021), the time for students to reach stabilization varies 
greatly in length, and academic success can be used 
to determine whether stabilization has been reached. 

Mathematical Models and Their Relevance and Usage 
for the Educational Context 

A mathematical model is a representation of aspects 
of an extra-mathematical domain using some 
mathematical entities and relations between them (Niss 
& Blum, 2020). For an example of a modelling cycle often 
used in teaching and learning, see Blum and Leiβ (2007). 
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In the study presented here, our focus was not to use a 
mathematical model for teaching or learning, but rather 
to apply the modelling process to solve a real-life 
problem. Mathematical models are usable at all levels of 
society. Some of these are to control processes, to design 
products, and to monitor and influence systems.  

The modelling process is cyclic. The first step is 
usually to identify the problem in the real world; for 
example, low throughput rates in a science course. The 
second step is to make assumptions and identify suitable 
variables by selecting relevant information and 
searching for relations; for example, using small-scale 
and large-scale continuous assessment marks as 
variables for the model. The third step is to formulate a 
mathematical model and perform procedures to find 
results; for example, to use statistical methods such as a 
linear regression model to find results. The fourth step is 
to analyze and assess the solution by questioning the 
results and consequences; for example, to check the 
model’s accuracy and consider if the model is suitable in 
the context and can be used for prediction. The last step 
is to iterate the modelling process to refine and extend 
the model; for example, by using different data sets or 
adding variables to the model.  

It seems reasonable to consider using a mathematical 
model to predict at-risk students in the STT, but if such 
a model is used to improve decision-making (e.g., 
regarding study success or adequate support) then the 
quality of the model is also important. Thus, in reference 
to the aim of this study, the emphasis should be on the 
product and its efficiency, as it would play a larger role 
in decision-making, rather than on the modelling 
process itself. 

One example to illustrate how the proposed 
mathematical model could potentially impact decision-
making in the context of STT is to monitor student 
grades at three time intervals in the semester. As 
mentioned before (see previous section), several 
characteristics describe at-risk students; one of the 
characteristics is when students experience a grade 
retention, which means they are steadily more at risk. 
Therefore, the continuous monitoring of student 
progress is imperative to identify students who are at 
risk of failing a course. The time factor is often found to 
be an influential factor (see van der Put, 2020), and early 
prediction of at-risk students can lead to early 
prevention and early support (for example, assisting 
students via targeted consultation sessions with the 
course tutors and lecturer). The time factor is crucial as 
students can be at risk at any time during the semester 
(even if they were not at risk at the start of a course), or 
they might be at risk at the start of a course and become 
more stable a few weeks later. Thus, in larger first-year 
classes, results from a suitable predictive model (or 

                                                           
1 The assessment structure, to calculate the final course mark (FM), consists of small-scale assessments (class tests, tutorials, and 
practical) together 10%, two large-scale assessments (semester tests) each 20%, and a final examination of 50%. Six content areas 

models) can help lecturers and course administrators to 
identify and keep track of at-risk students and plan 
targeted support at specific time intervals.  

During the evaluation of a model, the following 
criteria should be considered (see James et al., 2021; 
Meyer, 2012):  

(1) accuracy (referring to the correctness of the output 
values),  

(2) realism (referring to the correctness of 
assumptions),  

(3) precision (questioning if its predictions are in 
exact numbers),  

(4) robustness (questioning if the model is to some 
extent protected against errors in the input data),  

(5) generalizability (considering if the model can be 
applied in another context), and  

(6) fruitfulness (questioning if the results bring 
forward useful conclusions).  

Unfortunately, we do not have a single model that 
can be applied to all situations, and, therefore, we need 
to evaluate various models to find a suitable model for 
the problem at hand (see James et al., 2021, chapter 2).  

Through predictive modelling, we intend to use 
mathematical and computational methods to predict 
students’ probability of academic success based on 
changes in the model input values. A limitation in 
building accurate predictive models is that these models 
are largely dependent on the quality of the data 
available. In this study, the quality and reliability of the 
data (which were only collected in one academic 
semester) influence the accuracy (or predictive power) of 
the models. A true evaluation of the accuracy of the 
models used will require observations over several 
years.  

DESIGN AND METHODS 

The idea to conduct the study developed at the end 
of the COVID-19 era when business as usual was again 
widely promoted and several lecturers discussed the 
unknown effect of the pandemic on education. The study 
was implemented from February to April 2022. Knowing 
the challenges associated with predictive mathematical 
models (such as the quality of data) the research team 
decided to collect data from participants at three time 
intervals in the academic semester; in weeks one, three, 
and seven. These specific intervals were chosen for three 
reasons–the transition phase of a first-year student, the 
time factor (aligned with the idea that early 
identification leads to early prevention), and the 
alignment with course assessments (both small and 
large-scale assessments) and the assessment structure.1  
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Data were collected in week 1 via the ARQ, then 
again in week 3 from results obtained in small-scale 
continuous assessment tasks, and in week 7 from the 
results obtained from a large-scale continuous 
assessment task (see later sub-sections for details). The 
data were used to calibrate predictive models and to 
identify suitable models for the context (see later sub-
section for details). The study was quantitative-oriented, 
and data were collected and processed according to the 
university’s standard ethical procedures.  

Participants 

The participants in this study included 130 student 
teachers in the first-year life science class from a large 
public university in Johannesburg. Although the 
participants are from the Faculty of Education, the 
course is offered in the Faculty of Science. The sample 
was conveniently chosen as the second author was the 
course lecturer who is an experienced lecturer in 
undergraduate life science courses. Further, the content 
in the first-year life science course contains several 
challenging topics that are not normally treated at the 
school level, which created an ideal context for the study. 

Even though English is the language of instruction at 
the university, most students speak one of the other 
official languages (e.g., Zulu) at home. South Africa is a 
country with numerous educational disadvantages, and 
participants in this study likely had diverse school 
experiences. Data on participants’ school experiences 
during the pandemic and assessment results at the 
secondary level are not available. Data collected from the 
entire cohort was used to build and ‘train’ the predictive 
models.  

Predictor Variables 

Several variables were used to predict at-risk 
students in the life science course in the first academic 
semester, at three time intervals. More details on the 
predictor variables and when they were available 
throughout the course are outlined below. The reasons 
for considering variables at the three time intervals (as 
mentioned earlier) were mainly to continuously monitor 
students’ progress from the start of the course (aligned 
with the assessment structure) and to more accurately 
identify/monitor at-risk students using informative 
variables as students’ progress through the course. We 
selected predictor variables that were fairly easy to 
obtain and that provided sufficient data, such as an 
online survey (ARQ) and assessment marks. The natural 
expectation was that as students progressed through the 
semester, we would gradually gain more insight into the 
students’ possible success (or failure) in the course. A 
broader aim following from this research initiative 

                                                           

were treated, and each content area was assessed by small-scale assessments. Each semester test focused on three content areas 
and the examination focused on all content areas.  

would be to provide adequate and effective support to 
at-risk students. However, by waiting too long in the 
academic semester to gather data on students’ progress, 
educators would have less time for meaningful 
interventions to support struggling students with less 
promising results. Thus, the time factor was considered 
in selecting suitable predictive models. It is more 
difficult for students to make up marks in a cumulative 
weighted assessment grading system later in an 
academic semester. Next, we explain the predictor 
variables considered in the study and the various time 
intervals: 

Week 1–Academic readiness questionnaire 

During the first week of the academic semester, we 
had no information available to build a predictive model 
for first-year students. Therefore, we decided to collect 
data from students in week one via an ARQ. The ARQ 
was available to all students on the University’s learning 
management system, Blackboard. Various surveys that 
measure the academic readiness of students exist in the 
literature (e.g., Bitzer, 2003; Lemmens, 2010; Pintrich & 
De Groot, 1990), but the ARQ developed by Lemmens 
(2010) seemed more appropriate for this study as it was 
designed to measure South African students’ readiness 
for tertiary education. The items were sourced from 
other well-studied surveys, then Lemmens (2010) tested 
and determined their relevance and comprehensibility 
in the South African context.  

The ARQ consists of 70 questions measured on a 
Likert scale (1–definitely disagree, 2–disagree, 3–neutral, 
4–agree, 5–definitely agree). Through a sample of 1,222 
first-year students in the Faculty of Economic and 
Management Sciences, Lemmens (2010) identified five 
potential factors in an orthogonal factor analysis with 
eigenvalues larger than two, which explain a combined 
total of 31.7% of the cumulative variance. Further 
comparative analysis was carried out on a reduced three-
factor analysis. However, this did not produce better 
results and ultimately the five factors were retained. The 
five factors, developed through this analysis process 
(Lemmens, 2010), to identify academic readiness are 
labelled:  

(1) achievement motivation orientation,  

(2) learning efficiency,  

(3) goal orientation,  

(4) integration and support, and  

(5) reading behavior.  
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Low scores for the first four categories are associated 
with risk, whereas high scores for reading behavior are 
associated with risk. Further explanations of the five 
factors, along with an example question from each 
factor, are given in Table 1. 

Determining whether high reading behavior scores 
are associated with at risk is peculiar to the study and 
would need further investigation. However, it is likely 
that reading ability and comprehension would typically 
be a stronger measure related to academic readiness than 
reading behavior (Du Plessis et al., 2005; Lemmens, 2010, 
p. 249), but it is also more difficult to measure. Further, 
the questions related to the reading behavior in the ARQ 
do not inspire student confidence in the course content, 
which would support the association between high 
scores and being at risk. This is evident in the example 
question given in Table 1. 

The ARQ was voluntary for students, and 88 
responses were recorded (out of a class of 130 students). 
For each student, we calculated their mean Likert score 
for the five factors shown in Table 1, representing the 
student’s mean score for each factor. Descriptive 
statistics were then calculated on these scores and shown 
in Table 2. The descriptive statistics show that most 
students are ready for tertiary education (sample mean, 
median, and mode scores are between 3.4 and 4.5 for 
each category out of a total score of 5 with a low standard 
deviation in the sample data), except for the category 
reading behavior, where high scores are associated with 
being at risk.  

Any model built using the ARQ data can only 
forecast a future student’s expected outcome if they 
completed the questionnaire during week 1. Although 
the ARQ showed promising results for students, we 
expected lower mean scores. 

Week 3–Small-scale assessment tasks (class test 1, 
tutorial 1, and practical 1) 

By week three of the academic semester, we have 
accumulated further data in the form of students’ marks 
from three small-scale assessment tasks (class test 1, 
tutorial 1, and practical 1). All three assessment tasks 
focused on the content in the biochemistry section of the 
life science course (i.e., the macromolecules of life: 
carbohydrates, proteins, lipids, and nucleic acids) that 
was presented during the first three weeks of the 
semester. A class test is an individual assessment of an 
entire section (e.g., class test 1 on the macromolecules of 
life) administered in official class time. A tutorial task is 
an in-class individual or group activity on the content 
covered in one week during a tutorial session (e.g., 
tutorial 1 on carbohydrates), and students can be 
supported by a course tutor if needed. A practical task is 
an individual hands-on activity in a laboratory where 
students apply the theory covered in each section (e.g., 
practical 1 on carbohydrates, proteins, lipids, and nucleic 
acids) and laboratory assistants provide support, related 
to practical matters, to students, if needed. From week 
one to three, the lecturer (and the second author of this 
paper) monitored class attendance carefully and 

Table 1. The five factors of the academic readiness questionnaire (Lemmens, 2010, p. 161) 

Factor name Definition 

Achievement motivation 
orientation (17 questions) 

The degree to which one has an intrinsic interest in higher education and an expectation to 
achieve academically. 
Example statement: I can be successful in my studies this year. 

Learning-efficacy 
(12 questions) 

The degree of confidence in one’s own ability to achieve one’s academic goals. 
Example statement: I have confidence in sharing my own opinions, even if they might be different from 
the way most other people think. 

Goal orientation 
(11 questions) 

The degree to which one can plan for learning by setting task-specific goals. 
Example statement: I set specific goals before I begin learning for tests/exams. 

Integration and support 
(14 questions) 

The degree to which student experiences institutional, social, family, and financial support. 
Example statement: If I run into problems at university, I have someone who would help me. 

Reading behavior 
(6 questions) 

The degree to which one enjoys reading for pleasure. 
Example statement: I will try to do optional reading even though I know it will not influence my 
performance. 

 

Table 2. Descriptive statistics for the five factors from the ARQ 

 Achievement Efficacy Goal orientation Integration Reading 

Mean 4.2 3.6 3.7 3.5 3.8 
Median 4.3 3.7 3.7 3.5 3.8 
Mode 4.6 3.8 3.8 3.4 4.5 
Standard deviation 0.6 0.6 0.5 0.5 0.7 
Kurtosis 5.0 -0.1 0.0 0.0 -0.5 
Skewness -1.9 -0.5 -0.1 -0.3 -0.3 
Minimum 1.7 2.0 2.5 2.2 2.2 
Maximum 4.9 4.7 5.0 4.5 5.0 
Count 88.0 88.0 88.0 88.0 88.0 
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controlled the implementation of all learning situations 
and assessments. The idea was to keep a close eye on 
student progress and performance and to ensure all 
learning activities ran smoothly. According to the 
assessment structure, these three small-scale 
assessments contributed 5% towards the FM. The 
assessments were compulsory and provided a complete 
dataset of 130 responses. We expected the data could 
give further insight into students’ future success rate in 
the course and included this in the construction of the 
models (see later section for details). Descriptive 
statistics are shown in Table 3.  

It is evident from the small-scale assessment marks, 
accumulated by week three, that most students are 
proceeding well (mean marks greater than 50% indicate 
a mean pass mark for each assessment). It might be that 
students at this stage, while they experienced substantial 
lecturer support and could still master the volume of 
content, did not show cracks. We argue that by 
predicting at-risk students early in the semester, even if 
they do not yet show substantial evidence of an at-risk 
status (e.g., failing an assessment), educators can 
provide additional support to lower-performing 
students who might fall behind later in the semester. 

Week 7–Large-scale assessment task (semester test 1) 

During weeks four to six of the academic semester, 
students were exposed to two new sections (on the topics 
of cells and mitosis) during lectures, as well as further 
small-scale assessments. In week seven, a large-scale 
summative assessment was scheduled on content 
sections one to three, which contributes 20% towards the 
FM. Aside from the final examination, this is one of two 
large-scale assessments in the course. A summary of 
descriptive statistics on the data collected from semester 

test 1 in week seven is shown in Table 3. Similar 
statistical measures of center and spread are found in the 
large-scale assessment and the accumulated small-scale 
assessments. Further, the linear correlation between the 
test scores and the FM was calculated and is shown in 
Table 4. Correlation measures the strength of the 
relationship between two variables, which is important 
when using information from one variable to predict 
another variable’s outcome. 

Results show a strong positive linear correlation 
between the large-scale assessment (semester test 1) and 
the FM (r = 0.7396), which suggests that predictive 
models based on linear relationships between variables 
are likely to be good models for identifying at-risk 
students. It is further evident from Table 3 that as the 
semester progresses, we obtain more insight into the 
expected success of students. Since all assessment 
variables are positively correlated with the FM, it follows 
naturally to start predicting at-risk students early, even 
with lower accuracy, but with the broader idea of 
targeted support for struggling students. 

Predictive Models 

In this study, we used three predictive models, 
namely a multiple linear regression model, a logistic 
regression model, and a decision tree model. These models 
are commonly used in statistical and data mining 
practices as they are easy to implement in most statistical 
software packages and have proven to be robust and 
relatively easy to interpret (see, e.g., James et al., 2021). 
The practice of data mining is to use statistical 
techniques to extract patterns and trends in data sets, 
which can be used to make informative decisions. In this 
study, we aimed to identify patterns and trends (by 
statistical models) from the data obtained on students’ 

Table 3. Descriptive statistics of small-scale assessment tasks (class test 1, tutorial 1, and practical 1) and a large-scale 
assessment task (semester test 1) 

 
Week 3 (contributing 5% of FM) Week 7 (contributing 20% of FM) 

Class test 1 Tutorial 1 Practical 1 Semester test 1 

Mean 56.7 66.3 54.1 64.1 
Median 61.0 69.0 56.0 65.0 
Mode 0.0 68.0 58.0 68.0 
Standard deviation 23.5 19.9 15.7 12.5 
Kurtosis 0.7 4.3 1.3 1.0 
Skewness -1.1 -1.9 -0.7 -0.6 
Minimum 0.0 0.0 0.0 22.0 
Maximum 97.0 99.0 90.0 92.0 
Count 130.0 130.0 130.0 130.0 

 

Table 4. Correlation between test scores, both small-scale, and large-scale assessments 
 Class test 1 Tutorial 1 Practical 1 Semester test 1 FM 

Class Test 1 1.0000     

Tutorial 1 0.6184 1.0000    
Practical 1 0.3450 0.3813 1.0000   

Semester test 1 0.4574 0.4853 0.3493 1.0000  

FM 0.4718 0.4652 0.4144 0.7396 1.0000 
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results for the assessments and the ARQ, and we used 
the models to identify the current students’ trajectory. 
All predictive models were implemented in MATLAB 
using the built-in statistical toolbox. Technical and 
mathematical aspects of the predictive models are 
shared in this section, which might not be interesting to 
all readers, but we argue it is necessary to explain these 
aspects to advance the understanding of these models to 
readers and for possible duplication in other contexts.  

In part a in Figure 1, the concept of data mining and 
predictive modelling is illustrated. In particular, Figure 

1 shows the relationship between three covariates 
obtained in week one from the ARQ questionnaire, 
namely achievement, efficacy, and goal orientation 
(presented on the x, y, and z-axis), along with the 
students’ outcome in the course (pass +/fail ○). 
Similarly, part b in Figure 1 shows the relationship 
between three covariates accumulated by week seven, 
namely class test 1, practical 1, and semester test 1. We, 
therefore, aim to use the sample data (as shown in Figure 

1) to train a model that uses the covariates as an input to 
identify patterns and trends, which can then be used to 
predict future students’ outcomes (pass or fail) in the 
course. 

In building predictive models, we are interested in 
understanding the association between the response 
variable (course outcome), 𝑌, and the available 𝑛 
covariates (predictor variables), 𝑋1, 𝑋2, … , 𝑋𝑛. To do this, 
we need to identify the following (see, e.g., James et al., 
2021): 

1. Which predictor variables are associated with the 
response variable? 

2. What is the relationship between the response and 
the predictor variables?  

3. If there is a relationship, how can the relationship 
between the response and predictor variable be 
defined (e.g., as linear)? 

Thus, in this study, the goal was to identify which 
predictor variables–of the five ARQ factors (achievement 
motivation orientation, learning efficiency, goal orientation, 
integration and support, and reading behavior), the three 
small-scale assessments (class test 1, tutorial 1, and 
practical 1), and the large-scale assessment (semester test 
1)–are associated with the response variable (course 
outcome), and which model is best to capture this 
relationship. This was done by carrying out model 
diagnostics after fitting each model to the sample data 
(i.e., analyzing the model residuals and carrying out 
goodness-of-fit tests). 

Multiple linear regression model 

The first model considered in this study assumes a 
linear relationship between the response variable and 
the predictor variable. The standard multiple linear 
regression model is given as a linear relationship 
between the outcome and the 𝑝 predictor variables (see, 
James et al., 2021):  

 𝑌 = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝜀, (1) 

where 𝑋𝑗 represents the 𝑗th predictor variable, 𝛽𝑗 

represents the coefficient that quantifies the association 
between the predictor variable and the response variable 
𝑌, and 𝜀 represents a random error term with mean zero 
and constant variance. Once the model has been fit to the 
observed data, the relationship between the response 
variable and predictor variables must be tested (model 
diagnostics). This is typically done by testing the null 
hypothesis: 𝐻0 ∶  𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0 versus the 

alternative hypothesis: 𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽𝑗 is non-zero, 

and assessing the model residuals. If the null hypothesis 
is not rejected, it implies that the jth covariate provides 
no significant information to predict the expected 
outcome of the student and the variable should be 
removed from the model.  

   
(a)                   (b) 

Figure 1. A visual relationship between the covariates and the course outcome in (a) week 1 & (b) week 7 (Source: Authors’ 
own elaboration) 



EURASIA J Math Sci Tech Ed, 2024, 20(9), em2502 

9 / 14 

In this study, standard theoretical practices were 
followed, and we refer the interested reader to James et 
al. (2021) for more details regarding the estimation of the 
parameters, 𝛽𝑗, and the statistical fit of the model. 

However, most statistical packages can automatically 
carry out the estimation and produce the model fit 
analysis. 

Logistic regression 

The second model is called logistic regression, which 
is known to be a robust classification model for 
predicting at-risk students (see e.g., Marbouti et al., 2016; 
Van Appel & Durandt, 2019). 

Logistic regression is a powerful statistical forecast 
model that is widely used in Binomial data and can be 
easily implemented in many statistical programs. Rather 
than forecasting the students’ grade (𝑌) directly, logistic 
regression models predict the probability that the final 
grade (𝑌) belongs to a certain category (i.e., 0 or 1) (see, 
James et al., 2021). For example, the probability of 
passing the course given a set (vector) of predictor 
variables, 𝑋, is denoted as 𝑝(𝑋) = 𝑃(𝑌 = 1|𝑋). We, 
therefore, model the function 𝑝(𝑋) using the following 
logistic function (James et al., 2021): 

 𝑝(𝑋) =
𝑒𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝

1+𝑒𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝
. (2) 

Eq. (2) can then be re-expressed as the log odds of 
passing the course: 

 𝑙𝑜𝑔 (
𝑝(𝑋)

1−𝑝(𝑋)
) = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝. (3) 

The logistic regression has log odds that are linearly 
related to X, where small values for the log odds 
represent high chances of failing the course. Standard 
theoretical practices, which are similar to applying the 
multiple linear regression model, were followed, and 
after fitting the logistic regression model to the sample 
data we carried out standard residual diagnostics and 
goodness-of-fit tests to assess the appropriateness of the 
model for the problem. 

Decision trees 

The third method is tree-based, which can be applied 
to both regression and classification problems. Tree-
based methods have the general advantage that they are 
simple to interpret and involve stratifying the predictor 
space into several simple paths (see, e.g., James et al., 
2021, chapter 8). Figure 2 and Figure 3 present visual 
representations of this idea for two decision trees. With 
reference to this study, variable x1 represents the mark 
for class test 1, variable x2 represents the mark for tutorial 
1, and variable x3 represents the mark for practical 1. 
Furthermore, for the classification model, 0 represents a 
‘fail’, and 1 a ‘pass’. At each node (triangle) of the tree, a 
question is asked, where a decision is made to branch to 
the left or the right. Each path is assigned to a terminal 
node (denoted as the dot) based on the answers to the 

questions. The forecast results are indicated below each 
terminal node. 

This tree-based process may produce good results on 
a training set, but it is likely to overfit the data, which 
will lead to poor test set results. Therefore, there is a need 
to prune the tree to fewer splits. This will likely lead to 
lower variance with better interpretations (see James et 
al., 2021, chapter 8). To find an optimal number of splits, 
which produce the lowest test error rate, we will make 
use of a technique called Monte Carlo cross validation 
(MCCV) (see the next section for clarification). 

Monte Carlo cross validation 

MCCV is a resampling approach that is often used to 
evaluate machine learning models (Shan, 2022). This is 
done by repeatedly selecting training and test splits from 
the sample data (Kuhn & Johnson, 2016). The researcher 
will typically decide on the proportion of the sample 
data that will form the training and test subsets as well 
as the number of repetitions. In this study, we followed 

 
Figure 2. Classification tree with reference to the marks for 
class test 1, tutorial 1, and practical 1 (Source: Authors’ own 
elaboration) 

 
Figure 3. Regression tree with reference to the marks for 
class test 1, tutorial 1, and practical 1 (Source: Authors’ own 
elaboration) 
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standard theoretical practices and randomly selected, 
without replacement, 50% of the sample data for training 
and the remaining 50% for testing, which was repeated 
1,000 times. For each of the 1,000 iterations, we 
calculated the measures of precision and recall (defined 
in the next section) and reported the average over the 
1,000 iterations. The use of cross validation techniques is 
particularly useful when limited statistical tests are 
available, such as in the multiple regression and logistic 
regression models (James et al., 2021, chapter 5). The use 
of cross validation methods is also useful in deciding on 
optimally pruning a decision tree (Efron & Tibshirani 
1994, chapter 17). The MCCV was used in assessing the 
accuracy of all the models used in this study. 

MODEL RESULTS AND DISCUSSION 

In this section, we report on the results, which follow 
the process of analysis: First, we applied the different 
predictive models (multiple linear regression, logistic 
regression, and decision trees) to our sample data and, 
second, we analyzed the performance and comparison 
of these models by calculating measures of precision and 
recall (this is the process to assess and compare models 
to identify the most suitable predictive model for the 
problem). 

Below is the measure that we used to assess the 
accuracy of the models. These measures are typically 
referred to in the literature as measures of precision and 
recall (see, e.g., James et al., 2021, chapter 4; Marbouti et 
al., 2016): 

1. Harmonic mean: The harmonic mean (F1.5) 
represents a weighted mean where the accuracy of 
predicting at-risk students is weighed more than 
the accuracy of predicting students who are not at 
risk. 

2. Accuracy: Proportion of correctly identified 
students out of the sample. 

3. Accuracy-pass: Proportion of students correctly 
identified as not at risk out of the true number of 
not at-risk students. 

4. Accuracy-fail: Proportion of students correctly 
identified as at risk out of the true number of at-
risk students. 

5. True negative: Correctly identified a student as not 
at risk, and the student passed the course. 

6. True positive: Correctly identified as at risk, and 
the student failed the course.  

7. False negative: The proportion of students who 
failed the course, where the model incorrectly 
identified the students as not at risk of failing the 
course. 

8. False positive: The proportion of students who 
passed the course, where the model incorrectly 
identified the students as at risk of failing the 
course. 

The precision and recall formulas for the above 
measure are given as (see Marbouti et al., 2016): 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠
 . (4) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝𝑎𝑠𝑠  =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑑 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠
 

 

=  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
. 

(5) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐹𝑎𝑖𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑒𝑑 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠
 

 

=  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
. 

(6) 

 

 𝐹1.5 =
(1+1.52)×𝑇𝑃

(1+1.52)×𝑇𝑃+1.52×𝐹𝑁+𝐹𝑃
, (7) 

where TP is true positives, FN is false negatives, and FP 
is false positives. 

The harmonic mean is particularly useful in this 
study as there is a larger consequence (and therefore 
weighed more in the harmonic mean) for not accurately 
predicting students who are at risk of failing the course, 
as they would not receive assistance, than accurately 
predicting students who pass the course.  

Week 1–Forecast Results 

Both the multiple linear regression and logistic regression 
models were inadequate to model at-risk students 
(based on the residual analysis and goodness-of-fit tests 
to the sample data) during the first week of the academic 
semester, by using the ARQ covariates (see earlier 
section for details). This is due to a non-linear 
relationship between the covariates and the response 
variable. 

The forecast accuracy results for the decision tree 
models using the ARQ as the predictor variable are 
shown in Table 5. This represents the accuracy of 
predicting at-risk students during the first week of the 
semester. Further, we give the standard error (SE) in our 
accuracy estimates. The SE is a measure of the variation 
in the estimates (i.e., how accurate the estimates are) over 
the 1,000 MCCV simulations. We focused on achieving a 
high accuracy-fail and a low false negative percentage, 
with low variation in our estimates (low SE). We regard 
the model outcome to classify a student as not being at 
risk, when the student is at risk of failing the course (false 
negative), as problematic with a large consequence for the 
student. 

We can see from Table 5 that predicting at-risk 
students during the first week of the semester using the 
ARQ does not provide a good prediction of at-risk 
students. Both decision tree models achieve a low 
accuracy in forecasting the students who failed the 
course with an average harmonic mean of 11-13% with a 
high (15-16%) forecast SE. Both models reported 
unsatisfactory false negative percentages (10%). Early 
prediction of at-risk students is not particularly accurate; 
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however, it identifies students who may require targeted 
support early in the academic semester. If a student was 
incorrectly identified as at risk, the student would still 
benefit from the intervention. Students can be reassessed 
during week three, with potentially better accuracy. We, 
therefore, argue that both at-risk and non-at-risk 
students can benefit from early prediction. 

Week 3–Forecast Results 

Table 6 shows the accuracy of predicting at-risk 
students during the third week of the academic 
semester. Similar to the week one predictions, the 
multiple linear regression and logistic regression models 
were not adequate models for the data. Using only the 
three small-scale assessments (class test 1, tutorial 1, and 
practical 1) produced the strongest models during week 
three. Both decision tree models achieved a significant 
increase in accuracy with an overall harmonic mean 

accuracy of 33-34% and an accuracy-fail score of 33%. 
Further, we have seen a decrease in the forecasts SE 
(from lying between 17-20% in week 1 to 16-17% in week 
3). Although we can identify an improved accuracy in 
predicting at-risk students in week three compared to 
week one, the results are not yet sufficiently good. This 
is further supported by an increase in both the 
proportion of false negative and false positive cases in week 
three. 

Week 7–Forecast Results 

In Table 7, we show the predictive results for the 
models using only the marks obtained from the large-
scale assessment (semester test 1), which were 
implemented during week seven of the academic 
semester. Using only the large-scale assessment mark 
yielded the strongest model by our model diagnostics 
and cross-validation analysis. However, all models 

Table 5. Cross-verification results using ARQ scores from 
week 1 

Method 
Decision tree 
classification 

Decision tree R 

Harmonic mean (F1.5) 13% 11% 
SE 15% 16% 
Accuracy 83% 85% 
SE 6% 6% 
Accuracy-pass 92% 95% 
SE 8% 6% 
Accuracy-fail 15% 11% 
SE 20% 17% 
True negative* 81% 84% 
SE 7% 6% 
True positive* 2% 1% 
SE 2% 2% 
False negative* 10% 10% 
SE 4% 4% 
False positive* 7% 5% 
SE 7% 6% 

Note. *The percentage of students 

Table 6. Cross-verification scores using small-scale 
assessments from week 3 (class test 1, tutorial 1, and practical 
1) 

Method Decision tree C Decision tree R 

Harmonic mean (F1.5) 33% 34% 
SE 15% 13% 
Accuracy 77% 77% 
SE 5% 5% 
Accuracy-pass 88% 88% 
SE 7% 7% 
Accuracy-fail 33% 33% 
SE 17% 16% 
True negative* 71% 71% 
SE 6% 6% 
True positive* 6% 6% 
SE 3% 3% 
False negative* 13% 13% 
SE 5% 4% 
False positive* 10% 10% 
SE 6% 6% 

Note. *The percentage of students 

Table 7. Cross-verification scores using a large-scale assessment from week 7 (semester test 1) 

Method Logistic regression Multiple regression Decision tree C Decision tree R 

Harmonic mean (F1.5) 57% 64% 58% 58% 
SE 12% 9% 13% 14% 
Accuracy 88% 89% 86% 87% 
SE 3% 3% 4% 4% 
Accuracy-pass 97% 96% 93% 94% 
SE 2% 2% 5% 4% 
Accuracy-fail 52% 60% 56% 55% 
SE 13% 10% 15% 16% 
True negative* 78% 78% 75% 76% 
SE 4% 3% 5% 4% 
True positive* 10% 11% 11% 11% 
SE 3% 3% 3% 3% 
False negative* 9% 8% 9% 9% 
SE 4% 3% 4% 4% 
False positive* 3% 3% 6% 5% 
SE 2% 2% 4% 3% 
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(multiple and logistic regression and decision trees) are 
viable models. The linear regression models performed 
well this time due to the strong linear relationship 
between the mark for semester test 1 and the FM (see 
Table 4). In Table 7, we report an average harmonic mean 
of between 57-64% (with lower forecast SE, between 9-
14%) for all models, an overall accuracy between 86-89%, 
and an accuracy-fail (correctly predicting a student to fail) 
of between 52-60%. The forecasts during week seven also 
yielded the lowest proportion of false negative and false 
positive outcomes (between 8-9% and 3-6%, respectively). 

Accurately predicting students who are at risk of 
failing a course is notoriously difficult. Several aspects 
should be considered, such as suitable variables, models, 
and time intervals. Concerning the research questions 
(see earlier section), we can confirm that multiple 
regression, logistic regression, and decision tree models 
can be used to predict at-risk students. Our assessment 
shows that decision tree models are most suitable for 
predictions in weeks one and three, albeit with limited 
accuracy. In week 7, all models can be used. However, 
the most accurate and sufficiently good forecasts can be 
generated by the multiple linear regression model 
(highest accuracy-fail, lowest false negative, and lowest SE 
percentages). Continuously modelling students’ 
expected outcomes is an idea to advance the STT for 
lecturers, course administrators, and students.  

CONCLUSION AND PERSPECTIVES 

In this study, the STT of a small sample of 130 first-
year Life Science students was investigated. The sample 
was from a public university in South Africa. 
Quantitative data were collected from the ARQ 
questionnaire in week one (from five factors: achievement 
motivation orientation, learning-efficacy, goal orientation, 
integration and support, and reading behavior), small-scale 
assessments in week three (class test 1, tutorial 1, and 
practical 1) and a large-scale assessment in week seven 
(semester test 1). Predictive models (multiple linear 
regression, logistic regression, and decision trees) were 
constructed using standard statistical practices. Through 
an MCCV method, the performance of the executed 
predictive models was assessed. The models were 
compared at three different time intervals (weeks one, 
three, and seven) to balance the trade-off between early 
prediction and accuracy. The balance between the time 
factor and accuracy is a novel aspect of this study. Also, 
with this study, we contribute to the discussion in the 
literature by offering new ideas and methods to advance 
the STT. Further, aligned with the call in the special issue 
in Educational Studies in Mathematics (Di Martino et al., 
2023), this study provides unique insights from an 
under-represented context with a sample of teacher 
education students. Considering the devastating effect 
of COVID-19 on education, particularly in developing 
countries, the idea of supporting lecturers and students 

with data generated through predictive models in the 
STT seems promising.  

In week one, only the decision tree model could be 
used to predict students who are at risk of failing the 
course. The prediction accuracy is low, albeit early, 
which provides valuable time for lecturers to design 
targeted support for students and for students to benefit 
from the support. Similar results were reported in week 
three. 

In week seven, all predictive models could be applied 
to the data structure and results could be obtained. Both 
regression models showed the most promising results, 
with the multiple linear regression model outperforming 
the logistic regression model. On previous occasions, the 
logistic regression model was proven to be a powerful 
statistical forecast model and has achieved reliable 
forecasts in studies (e.g., Marbouti et al., 2016; Van Appel 
& Durandt, 2019). It is evident from the investigations 
that we could increase the prediction accuracy as we 
progressed through the semester. Higher accuracy 
values were reported in week seven compared to weeks 
one and three, but at a later stage in the academic 
semester. Thus, lecturers will have less time to take 
action to support at-risk students, and students will have 
less time to benefit from the support. 

We realize the sample of life science students is small, 
and insignificant compared to other courses in STEM 
degrees with high failure rates (e.g., first-year 
mathematics courses). For a more comprehensive study, 
the models should be repeated and tested on larger 
samples and in other courses. An interesting aspect 
would also be to test the models in different contexts 
(e.g., samples from developing countries versus samples 
from developed countries). 

Further ideas following from this study are to design 
and implement targeted intervention (or support) 
programs based on early prediction results, and to 
monitor students’ progress as they are exposed to the 
intervention. The notions ‘to predict’, ‘to support’, and 
‘to monitor’ at-risk students are important for role 
players in tertiary education (such as university 
administration, university management, lecturers, and 
students) and one notion informs the others. One reason 
to support this idea, from a South African perspective, is 
that many students cannot financially afford to repeat 
courses. Hopefully, role players can use the data 
generated from predictive models to advance the STT in 
science, and, more broadly, STEM courses. 
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