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Abstract 

This paper starts from the hypothesis that algebraic reasoning can be used as an axis between 

different mathematical domains at school. This is relevant given the importance attributed to 

mathematical connections for curriculum development and the algebraic reasoning makes it 

possible to articulate it in a coherent manner. A definition of generalized algebraic reasoning is 

proposed, based on the notion of elementary algebraic reasoning of the onto-semiotic approach, 

and it is used to highlight the presence of typical algebraic processes in problem solving in 

geometrical contexts. To develop these ideas, a training course is designed and implemented with 

in-service secondary school teachers. Based on design-based research, the results obtained are 

contrasted with the expected answers. In this way, relevant information is obtained on how 

teachers mobilize different typically algebraic processes, that is, particularization-generalization, 

representation-signification, decomposition-reification and modelling. Actually, it is clear to affirm 

that teachers need specific training to improve their skills about how algebraic reasoning can help 

them to develop mathematical connections with their students. 
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INTRODUCTION 

Already the NCTM (2000) established that 
“connections” is a standard for school mathematics from 
pre-kindergarten through grade 12. Thus, the 
instructional programs should enable all students:  

− To recognize and use connections among 
mathematical ideas;  

− To understand how mathematical ideas are 
interconnected and build on one another to 
produce a coherent whole;  

− To apply mathematics in contexts outside of 
mathematics. 

                                                           

 This article has been developed within the framework of the CAP PI1029 project, called “Generalized elementary algebraic 
reasoning for the development of mathematical competencies of the secondary education curriculum”, funded by Pontificia 
Universidad Católica del Perú. 

The importance of connections, whether intra-
mathematical or extra-mathematical, remains central to 
mathematics education today (Ledezma et al., 2024). 
This is partly because problems that require making 
connections encourage the search for essential properties 
of mathematical concepts, which in turn helps to 
understand the fundamental characteristics and 
properties that define them (Hatisaru et al., 2024). In 
particular, Businskas (2008) already pointed out that the 
particularization-generalization connection is key, that is, 
when idea A is a generalization of idea B or, reciprocally, 
when B is a particularization of A. 

Kaput (2008), for whom the action guided 
syntactically on symbols is essential in algebraic 
reasoning, justifies that these symbols represent classes 

https://doi.org/10.29333/ejmste/15709
http://creativecommons.org/licenses/by/4.0/
mailto:cgaita@pucp.edu.pe
mailto:miguelr.wilhelmi@unavarra.es
mailto:fugarte@pucp.edu.pe
mailto:cintya.gonzales@pucp.pe
https://orcid.org/0000-0002-7827-9262
https://orcid.org/0000-0002-6714-7184
https://orcid.org/0000-0001-5071-8924
https://orcid.org/0000-0003-2130-1710


Gaita et al. / Mathematical processes for the development of algebraic reasoning in geometrical situations 

 

2 / 14 

of objects and not concrete elements. So, according to 
Kaput (2008), generalization is a central aspect of 
algebraic reasoning. From the onto-semiotic approach 
(OSA) to mathematical knowledge and instruction, a 
mathematical practice is considered algebraic when 
certain algebraic objects and processes are present, 
among the latter, those of particularization-
generalization stand out. As a result of a generalization 
process, a type of mathematical object called intensive is 
obtained, which corresponds to the rule that generates 
the class. As a result of the reciprocal process, 
particularization, extensive or particular objects are 
obtained (Godino et al., 2014b). 

For OSA, the development of algebraic reasoning is 
encouraged through situations that require making 
mathematical connections. In particular, Burgos et al. 
(2022) analyze the importance of elementary algebraic 
reasoning (EAR) in the development of probability from 
an intuitive to a formal approach. Likewise, Pallauta et 
al. (2023) make a study of statistical data tables in 
textbooks relating levels of stochastic reasoning to those 
of EAR. Bueno et al. (2022) carry out a study on the 
definite integral as a measurement problem solved, first 
by approximate and numerical methods and, gradually, 
by more formal and general methods.  

From other theoretical perspectives, research has also 
been conducted on the development of algebraic 
reasoning in a geometric domain (Barana, 2021; Boester 
& Lehrer, 2008; Silva, 2021). Despite all this, Strømskag 
and Chevallard (2022) observe that algebra is not a 
modeling tool in the current school curriculum and show 
how formulas used in geometry are currently reduced, 
in many cases, to arithmetic rules applied to numerical 
values. Therefore, it is necessary to determine a way to 
promote the development of algebraic reasoning in the 
school curriculum (Gaita et al., 2022). 

It is the teacher’s task to identify problems in 
different intra-mathematical or extra-mathematical 
contexts that require generalization processes to be 
carried out. This task is not trivial. Businskas (2008) 
reports that it is rare for secondary mathematics teachers 
to identify mathematical connections centered on a 
hierarchy of complexity. In order for the teacher to 
effectively perform this task, teachers must identify 
genuinely algebraic aspects in mathematical practice, as 
a prior step to progressively influence the algebraization 

of children’s mathematical activity (Aké, 2021). In 
addition, it is necessary to create instruments for teacher 
training to show the role of algebra as a modeling tool. 
This can be achieved by studying situations in different 
contexts, particularly the geometric one, as well as 
studying teachers’ mathematical performance in dealing 
with such situations. 

The main objective of this article is to explore how a 
group of mathematics teachers recognize the presence of 
algebra and algebraic processes in problems in 
geometric contexts. To achieve this objective, firstly, the 
specific objects and processes of EAR are introduced, 
and a generalized perspective of EAR is proposed. This 
generalized perspective allows the mobilization of the 
EAR in different contexts, particularly geometric ones. 
Secondly, design-based research (DBR) is developed 
from which experimental data are obtained through a 
questionnaire designed ad hoc with tasks that require 
algebraic reasoning in a geometric context. The results 
obtained are discussed and related through implicative 
analysis, and then the findings are contrasted with 
expectations. Finally, a synthesis and implications for 
teaching, oriented to the development of algebraic 
reasoning, are presented. 

THEORETICAL FRAMEWORK  

Objects, Dualities, and Mathematical Processes 

One of the objectives of the OSA is to analyze 
mathematical practices, as well as the types of objects 
and processes involved. Thus, it identifies a series of 
primary objects (problems, definitions, propositions, 
procedures, and arguments) and elementary processes 
associated with them (communication, 
problematization, definition, enunciation, 
algorithmization, and argumentation). Moreover, these 
objects and processes do not have an absolute nature but 
are relative to the context of use. Dualities are thus 
determined: extensive (particular)-intensive (general), 
expression-content, personal-institutional, ostensive-non-
ostensive and, finally, unitary-systemic. In addition, 
dualities are associated with processes (Godino et al., 
2007). Figure 1 represents these elements. 

To exemplify the dualities, we considered the 
following: “3” may represent:  

Contribution to the literature 

• This paper provides an extension of the common notion of Elementary Algebraic Reasoning like all kind 
of mathematical practice involving the processes of particularization-generalization, representation-
signification, and decomposition-reification, as well as the complex process of modeling. 

• Through design-based research, experimental data are obtained on how in-service teachers mobilize 
algebraic processes in geometric contexts. 

• The statistical analysis links empirical variables which determine groups of in-service teachers with 
different levels of mastery of algebraic processes in geometrical contexts. 
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− the number of bottles on a table (extensive),  

− the way this quantity is written (expression),  

− the activity performed by a child who counts how 
many bottles there are using the knowledge of 
“the last number indicates how many” (personal), 
and 

− the verbal answer given by the child: “there are 
three” (ostensive).  

If these dualities are not related to any other object, 
process, situation or context, they do not have a unitary 
character. However, the teacher has posed this counting 
as a phase prior to the situation “setting the table”, 
where the objective is the cardinal and the 
correspondence between coordinable sets (institutional). 
Actually, after counting the bottles, the children 
establish a connection between the glasses and chairs 
necessary for 3 people to sit down to drink. This way, “3” 
is the common characteristic of all sets of objects (content) 
and can be used to complete a table with plates, glasses 
and cutlery (intensive). This general knowledge is not 
verbalized but observed “in the act” (non-ostensive). 
Finally, “cardinal” knowledge will be used in other 
contexts in relation to other mathematical notions 
(systemic).  

With respect to the processes involved, writing “3” 
implies a materialization of this number, which could 
have been done differently: saying “three”, writing 
“three” and showing “three” fingers. Now, this 
ostensive display of the number three in a given context 
can be abstracted or isolated to use it in other contexts. 
This abstraction implies an idealization of the number. In 
the same way, for the other dualities, processes are 
defined to characterize them and make their emergence 
possible. These processes are generalization-
particularization, representation-signification, 

institutionalization-personalization, materialization-
idealization, decomposition-reification. In turn, these 
processes are related.  

For example, the process of idealization is sometimes 
mobilized through a process of generalization (“three as a 
class of sets with three elements”), through a process of 
signification that brings a different meaning (“three as a 
place in any list”). It could also consider a process of 
decomposition (“three as an example of cardinal or ordinal 
number as any natural number and, therefore, three is 
understood as part of the system of natural numbers”). 
Likewise, objects, processes, and dualities possess either 
a personal or institutional nature, depending on whether 
the mathematical practice is performed by an individual 
or whether it refers to the meaning attributed by an 
institution.  

Finally, the processes referred to so far, associated 
with both objects and dualities, can be part of more 
complex processes, such as problem solving, modelling, 
or the study of relationships or structures (Godino et al., 
2012). In the following section these concepts are 
adapted to define the generalized algebraic reasoning 
(GAR). 

Generalized Algebraic Reasoning 

In a “classical” school sense, algebra is the domain 
where formal manipulation of symbols begins. The 
expression “I was doing well until letters appeared” is a 
way of explaining the use of unknown quantities in 
solving equations or variables in defining functions, 
which appear in a generalized way in most curricula of 
different countries in the first years of secondary 
education (Castro, 2012).  

This reductionist view of algebra, exclusively 
associated with the literal manipulation of symbols, 
leads to a pejorative interpretation of the term 
“curriculum algebraization”, according to which 
problem solving is reduced to stereotyped exercises 
using given formulas. For this reason, some research 
shows concern about the role of algebra in schools. It is 
concluded that there is a need for “an imperative 
revitalization of the elementary algebra curriculum” 
(Strømskag & Chevallard, 2022, p. 1). 

Based on the different theories that study algebraic 
reasoning, proposals have been made by the OSA to 
characterize objects and processes at stake in algebraic 
practices. Thus, a structure of algebraization levels is 
proposed to gradually develop EAR, from primary 
(Godino et al., 2012, 2014b) to compulsory secondary 
school (Godino et al., 2015). For a more detailed analysis, 
sub-levels have been characterized, considering 
different representations and transformations between 
them, degrees of generalization and functional 
reasoning, mathematical structures and structural 
reasoning, as well as analytical calculations (Burgos et 
al., 2024).  

 
Figure 1. Onto-semiotic configuration of objects, processes, 
and dualities (Godino et al., 2016, p. 97) 
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Dual processes are important in every mathematical 
activity, but in algebraic practice, the processes of 
particularization-generalization, representation-
signification and decomposition-reification are 
particularly typical. It has long been recognized that 
generalization is a key feature of algebraic reasoning 
(Carraher et al., 2008; Cooper & Warren, 2008; Mason & 
Pimm, 1984), which has its dual side in particularization. 
Moreover, generalization is constituted as a criterion or 
rule that delimits elements of a set with a common 
characteristic. “The set then becomes something new, 
different from the elements that constitute it, as a unitary 
entity emerging from the system. Therefore, in addition 
to generalization, which leads to the set, there is a 
process of unitarization [or reification]” (Godino et al., 
2014b, p. 205-206). Mathematical practice may require 
decomposing this new unitary object; this happens in the 
process of particularization. Finally, progress in 
algebraic practices is conditioned by giving meaning to 
a different way of representing mathematical objects. 
Thus, the dual process of representation-signification is 
key, allowing abstraction as a process that distinguishes 
expression and content. 

EAR is a way of thinking and acting in mathematics, 
mainly characterized by the intervention and emergence 
of intensive objects at progressive levels of generality. 
However, generalization is not exclusively studied 
algebraically, nor do all algebraic activities involve 
generalization (Godino et al., 2012). In fact, this way of 
“reasoning algebraically” is applied transversally in the 
different domains of mathematics in secondary 
education (Burgos et al., 2024). For this reason, the 
process of modeling is considered particularly 
important. Modeling can be intramathematical, when a 
mathematical object is turned into another by changing 
the domain or register, or extramathematical, when a non-
mathematical situation is “converted” to a mathematical 
one. In both cases, the change of context implies 
mathematization, that is, establishing a formulation of the 
situation in a different register or domain and 
identifying an operative and discursive practice for 
solving it. Once a solution to the mathematical problem 
has been determined, an interpretation of it is made in the 
original context. Modeling is thus a full schematic 
“mathematization-interpretation” cycle (Figure 2).  

Thus, a “positive” vision of “curriculum 
algebraization” is adopted as a method that seeks to 
balance the dual processes of particularization-
generalization, representation-signification, 
decomposition-reification, and to incorporate modeling 
(mathematization-interpretation) as an unavoidable 
complex articulating process. This leads us to propose a 
perspective of algebraic reasoning that exceeds the scope 
traditionally assigned to it in the curriculum, which we 
call GAR.  

Elements of the Model of Mathematical Didactic 
Knowledge 

In the OSA to mathematical knowledge and 
instruction (Font & Contreras, 2008; Font et al., 2008; 
Godino et al., 2006a, 2006b, 2007; Montiel et al., 2009) five 
components of analysis have been proposed: 

1. Onto-semiotic configuration, which involves the 
elaboration of networks of mathematical objects 
and processes at three levels:  

a. referential network or framework of the 
instructional process,  

b. to be taught network and, finally,  

c. actually taught network. 

2. System of practices, which implies the analysis of 
types of problems and their articulation in 
operational practices (what and how to do) and 
discursive practices (justification of relevance and 
discussion of their significance).  

3. Educational trajectories, which involves the 
determination of potential trajectories, and the 
analysis of trajectories actually implemented, as 
well as the discussion of the didactical interactions 
observed. 

4. Contextual regulations, which allows of the 
identification of the system of norms that, 
implicitly or explicitly, determines the 
relationships between teacher, students and the 
mathematical content under study. 

5. Didactic suitability, which allows the assessment of 
the suitability of the planned and effectively 
implemented study processes in three global 
facets: student-centered, according to cognitive and 
affective dimensions; teacher-centered, according to 
interactional and mediational dimensions; and, 
finally, mathematics-centered, according to 
epistemic and ecological dimensions. 

The teacher develops spontaneous epistemology 
(Brousseau, 1997) out of sheer professional necessity, 
which allows him to make decisions in the design, 
implementation and evaluation of instructional 
processes he/she is in charge of. However, while this 
spontaneous model is necessary, it needs to be improved 
in the pre-service and in-service teacher training. 

 
Figure 2. Modeling process (Source: Authors’ own 
elaboration) 
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When the teacher plans a type of interaction and 
establishes the use of material means in a temporal 
sequence, he must consider both the mathematics to be 
taught and the students who will learn it. The didactic-
mathematical knowledge model (Castro & Pino-Fan, 2021; 
Castro et al., 2018, Godino et al., 2017, Pino-Fan et al., 
2015, 2018) is a tool to interpret and characterize the 
mathematical and didactic knowledge of the teacher ‘in 
context’. This means that the possibilities and 
restrictions of the dimensions involved (epistemic-
ecological, cognitive-affective and interactional-
mediational) must be considered. Besides, the educational 
moment (design, implementation or evaluation of an 
instructional process) and the component under study 
(onto-semiotic configuration, system of practices, 
educational trajectories, contextual regulations or 
didactic suitability) must also be considered. 

These components of analysis are mutually related 
and condition the design of instructional processes and 
their implementation in the classroom (Figure 3). 

METHOD AND INSTRUMENT  

In this sense, this paper seeks to contrast, by means of 
experimentation, the theoretical foundation proposed in 
relation to the GAR since it is located within the DBR 
(Godino et al., 2014a), which consists of 4 phases: 
preliminary study, design, implementation, and 
evaluation. The preceding sections constitute a brief 
preliminary study. 

In the design phase, situations are constructed in 
geometric contexts. Besides, the presence of the typical 
processes of algebraic practices is justified when solving 
them. Based on this design, a questionnaire is developed 
to get information on didactic-mathematical knowledge 
from in-service secondary school teachers in relation to 

algebraic reasoning. The answers allows testing the 
hypothesis that secondary school teachers have a 
reductionist vision of “curriculum algebraization”.  

Questionnaire Design and Expected Answers 

The questionnaire consists of four situations that in 
school are situated in the geometrical field because they 
involve “figures and regions”, require “length or area 
calculations”, or their interpretation requires modeling 
“three-dimensional objects”. However, while solving 
these tasks, it becomes necessary to recognize algebraic 
objects and processes.  

The four situations of the questionnaire have the 
following structure:  

− A mathematical statement, questions involving 
mathematical knowledge, and a mathematical solution to 
the problem. Teachers solve the problem and use the 
given solution as a means of control. Thus, 
understanding the solution demands carrying out 
processes linked to GAR and is part of the professor’s 
mathematical knowledge. 

− Issues to evaluate aspects of didactic-mathematical 
knowledge of GAR. In this part, teachers explicitly 
identify algebraic objects and processes and relate 
them to answers from potential students of 
secondary education. This aspect is part of didactic 
knowledge in the epistemic facet. 

The four problems of the questionnaire are presented 
below, as well as the answers expected by the teachers. 
This corresponds to the a priori analysis of dual processes 
that should be identified as necessary for task solving. 
The processes privileged by GAR are detailed: 
particularization-generalization, representation-
signification, decomposition-reification, and modeling 
(mathematization-interpretation). 

Problem 1. Regions on a circumference 

The problem involves locating a certain number of 
points on a circumference, joining them two by two by 
means of segments, and determining the maximum 
number of regions into which the circle will be divided 
by these segments. 

Figure 4 shows the statement and the question on 
mathematical aspects. A sequence of figures appears, 
corresponding to the first three elements of the sequence, 
accompanied by a sequence of numbers, corresponding 
to the number of regions determined by these points. 
The mathematical question demands three new 
elements of the sequence.  

The expected answers in terms of the processes 
privileged by algebraic reasoning for problem 1 are: 

● Particularization-generalization. Teachers are 
expected to recognize that a (general) conjecture 
cannot be established on the basis of the first 5 
(particular) cases; this will be done by contrasting 

 
Figure 3. Dimensions and components for educational 
analysis and interventions (Source: Authors’ own 
elaboration) 
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with the actual construction of the sixth element of 
the sequence. On the other hand, teachers will 
indicate that a possible pattern identified by their 
students is simply to duplicate the previous term, 
based on the first 2, 3, or 4 terms. 

● Representation-signification. While counting, a 
representation is made to maximize the number of 
areas, so the expectation is that such representation 
be taken as a “type” or representative of a class, 
preserving the meaning of a figure that meets the 
conditions of the problem. Thus, in the case n=6, a 
regular hexagon is not a representative of the 
situation, since the number of regions it generates is 
not maximal (30 regions instead of 31).  

● Decomposition-reification. Based on experience, 
students are expected to obtain an expression linked 
to a known sequence type, whether arithmetic, 
geometric, or other types of progression similar to 
one previously studied. 

● Modeling (mathematization-interpretation). It is 
intramathematical, and the graphical representation 
of the regions is mathematized by means of a table of 
values, which is interpreted in terms of the maximum 
number of regions that can be constructed.  

Problem 2. Segment length 

Figure 5 shows the statement and the mathematical 
question of the second problem. This is a task in which 
the location of points on the line is described, and 
relationships are established between the lengths of the 

segments defined by these points. The question is to 
determine the length of one of the segments. 

The answers expected in terms of the processes 
privileged by algebraic reasoning for problem 2 are, as 
follows: 

● Particularization-generalization: Particular 
solutions of integer doubles (𝑚; 𝑛) must be 
recognized, as well as the general and necessary 
relationship there is between the lengths of these 
segments, that is, 3𝑛 − 4𝑚 = 60. As a result of 
interpreting this relationship, positive integer 
solutions are obtained, where “𝑚 is a multiple of 3 
and 𝑛 is a multiple of 4, being 𝑛 > 20” applies. 

● Representation-signification: In the solution, 
graphical (on the number line) and symbolic (by 
naming the segment lengths) representations are 
involved, between which relationships are expected 
to be established. In addition, the result of the 
symbolic manipulation must acquire meaning in 
graphical terms. Furthermore, the graphical 
representation in the solution is an ideogram, since, 

although distance 𝐵𝐶̅̅ ̅̅ = 𝑝 = 15 is fixed, measures 

𝐴𝐵̅̅ ̅̅ = 𝑚 and 𝐶𝐷̅̅ ̅̅ = 𝑛 may take infinite values since the 
relative position of points 𝐴, 𝐵, 𝐶 an 𝐷 must be 
preserved on the number line.  

● Decomposition-reification. Relationships of 
geometric lengths are interpreted by means of 
multiplicity properties of natural numbers and by 
imposing restrictions on the measures specific to the 
geometric context. This requires the establishment of 
mathematical connections between two domains 
and, therefore, understanding mathematical objects 
according to the unitary-systemic duality. 

● Modeling (mathematization-interpretation). It is 
intramathematical; the collection of geometric 
solutions is mathematized by means of an 
indeterminate compatible system of equations, 

 
Figure 4. Statement, solution, and didactic-mathematical 
issues associated with problem 1 (Source: Authors’ own 
elaboration) 

 
Figure 5. Statement, solution, and didactic-mathematical 
issues associated with problem 2 (Source: Authors’ own 
elaboration) 
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whose resolution allows determining the relations on 
the segments, which must be interpreted according to 
their relative position in the given ideogram.  

Problem 3. Areas of triangles 

Figure 6 shows the statement and the mathematical 
question of the third problem; a semi-circumference and 
two inscribed triangles are presented in such a way that 
one side of the triangle is the diameter of the semi-
circumference. The task is to obtain the difference 
between the areas of the two triangles. The question 
requires recognizing that one of the triangles has a 
constant area and that the area of the second triangle 
depends only on its height. 

The answers expected in terms of the processes 
privileged by algebraic reasoning for problem 3 are: 

● Particularization-generalization. It is expected they 
recognize that the figure is a representative of all 
semi-circumferences; therefore, any conclusions 
drawn can be generalized to all of them. Measures 
“x” and “y” do not represent particular metric values, 
but play the role of parameter and variable, 
respectively.  

● Representation-signification. The correct 
interpretation of formula D for the difference 
between areas requires the conventional use (in 
school) of “x” as a variable and as a parameter in the 
problem. In fact, this interpretation would not be a 
problem if instead of denoting the radius with “x”, it 
would have been denoted with “r”, and instead of 
“y”, “x” would have been used as the “first” variable. 
On the other hand, the use of “r” (radius) and “a” 
(height) would have caused a dual problem to the one 
given, since both letters (“r” and “a”) would have 
been interpreted as parameters based on which a 
solution would be obtained.  

● Decomposition-reification. It is expected they 
identify the relationship between the elements of the 
triangles and the semi-circumference. As a 
consequence, the notions of variable and parameter 
should be “explained” one in relation to the other, 
since both “vary”. However, it is also expected they 
recognize that they play a different role; namely, “y” 
as an independent variable and “x” as a parameter 
that determines a class of objects. 

● Modeling (mathematization-interpretation). It is 
intramathematical; it starts from a context of areas of 
triangles inscribed in a semi-circumference, and it is 
mathematized by means of a function, whose 
interpretation determines its domain of definition 
and the distinction between variable and parameter. 

Problem 4. Radius of the earth 

The fourth problem proposes to associate the shape 
of the earth to that of a sphere with a known radius and 
asks to compare the effect of encircling the earth at the 
equator with two ropes of different lengths, as shown in 
Figure 7. 

The purpose of the issues is that, by repeating the 
procedure in other particular situations, it is recognized 
that the answer does not depend on the radius of the 
sphere considered. 

 
Figure 6. Statement, solution, and didactic-mathematical 
issues associated with problem 3 (Source: Authors’ own 
elaboration) 

 
Figure 7. Statement, solution, and didactic-mathematical 
issues associated with problem 4 (Source: Authors’ own 
elaboration) 



Gaita et al. / Mathematical processes for the development of algebraic reasoning in geometrical situations 

 

8 / 14 

The answers expected in terms of the processes 
privileged by algebraic reasoning for problem 4 are: 

● Particularization-generalization. Once the problem 
has been solved in the plane, the expectation is to 
recognize that the procedure can be applied to any 
sphere, regardless of the size of its radius. To give 

meaning to the solution (constant function: 
1

2𝜋
 𝑚 ≅

15,9 𝑐𝑚), it should be noted that the ideogram of the 
solution–given by concentric circumferences–is valid 
for any sphere and that, therefore, the new “belt” is 

always separated by a constant quantity (
1

2𝜋
 𝑚 ≅

15,9 𝑐𝑚), regardless of the size of the sphere, whether 
it is like a pea, a ping-pong ball, a basketball, or the 
Earth. 

● Representation-signification. Understanding the 
solution requires understanding that the graphic 
representation, both of the earth and of the 
“extension” of its radius and the addition of 1 m, are 
ideograms because they have no metric sense (they 
are not represented to “scale”). Likewise, the 
representation of the concentric circumferences 
representing the equator, and the outer extended 
length is also an ideogram of a three-dimensional 
object in dimension 2.  

● Decomposition-reification. Answering the question 
“what type of function can you associate with the 
solution of these problems?” involves relating the 
constant function, as a unitary object, to the “types of 
functions” system.  

● Modeling (mathematization-interpretation). It is 
extra-mathematical; the earth is mathematized by 
means of a sphere (geometric object closer to the 
geoid). Moreover, mathematical work is not done with 
the sphere, but with its projection on a circumference. 
Thus, we have a different type of modelization, 
specifically an intramathematical one. 

Experimentation and Results 

After designing the instrument, which considers the 
processes favored by GAR applied to tasks in geometric 
contexts and their expected resolution, a study was 
carried out with secondary school mathematics teachers 
in continuing education.  

Population and sample 

The population was made up of active secondary 
school teachers, with several years of experience, from 
schools in medium-high socio-economic contexts, 
located in urban areas. 

The sample was intentional and consisted of 32 
mathematics teachers from private schools in Peru, 
comprised of 17 men and 15 women.  

Application of the questionnaire 

The instrument was applied in a continuing 
education class, whose objective was to show how to 
develop algebraic reasoning through different 
mathematical competencies proposed by the Peruvian 
national curriculum (MINEDU, 2016). There was 
particular consideration to the competency of solving 
problems of shape, space and location, linked to 
geometric knowledge. 

The training course was carried out in person during 
two consecutive days of four hours each. Teachers 
answered the questionnaire in the second half of the first 
session, working individually for a 90-minute period. 

Feedback and analysis 

Participants’ answers were subsequently evaluated. 
On the second day of training, feedback was provided 
focusing on the identification of algebraic objects and 
processes in geometric task solving. 

RESULTS AND DISCUSSION: 
ANALYZING THE ANSWERS TO THE 
PROBLEMS POSED 

This section presents and discusses the results 
obtained in the experiment, contrasting them with the 
expectations, that is, an a posteriori analysis or assessment 
is carried out, which is the fourth phase of DBR. This 
contrast between what was expected (prediction) and 
what was observed (contingency) seeks to control the 
internal validity of the observations. Moreover, DBR does 
not restrict data analysis techniques. Thus, in the first 
place, elementary descriptive statistics are used in the 
algebraic processes observed. Second, a statistical 
implicative analysis is performed, relating the 
mathematical activity identified in several problems. 
These two statistical techniques are triangulated so as to 
obtain consistent results and, therefore, a coherent 
analysis. 

Descriptive Analysis of Answers to the Problems 

Problem 1. Regions on a circumference 

The analysis of the first problem reveals that 60% of 
participants (19 out of 32) based their reasoning on 
numerical manipulation, omitting graphical 
representation and figure-number correspondence. This 
suggests a limited perception of these elements as a 
system. 

Teachers tend to look for patterns or general rules 
through numerical manipulation, although without 
interpreting these rules in the context of graphical 
constructions, that is, without considering that these 
numbers represent the maximum possible regions.  
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Dissociation of these two domains (numerical and 
figural) restricts the subjects’ ability to give meaning to 
the formulas generated. Thus, the operative activity 
(manipulation of numbers and search for a rule) is not 
complemented by a discursive activity that gives 
meaning to the rule. An imbalance between the 
processes of representation and signification is thus 
observed. In addition, an independent manipulation of 
objects and their meanings became evident, without 
reuniting them in a unitary object linking both domains.  

In terms of what responses, they would expect from 
their students after only presenting them with the 
number sequence, 53% (17 out of 32) of the teachers 
related the terms to their position in the sequence or to 
the previous term. This suggests that, in a school setting, 
few terms are considered “enough” to infer a rule. 

Thirty-one percent of the teachers (10 out of 32) did 
not provide a correct rule for the first 5 terms of the 
sequence, suggesting a greater difficulty with geometric 
progressions compared to arithmetic ones. Finally, 28% 
(9 out of 32) of the teachers presented answers unrelated 
to the task, characterized by “general” explanations 
about the need to obtain rules linking particular cases to 
a formula, but without actually doing so in the given 
problem. 

In all three cases, regardless of the correctness of the 
teachers’ answers, it is clear that particularization-
generalization processes are inherent to this type of task 
and, therefore, they are key to the development of 
algebraic reasoning. 

Problem 2. Segment length 

In the second problem, 78% of the teachers (25 out of 
32) recognized the existence of infinite solutions for the 
lengths of segments 𝑚 and 𝑛, but only 50% (16 out of 32) 
were able to present three particular cases. This shows a 
greater difficulty in recognizing the particular from the 
general. 

Only 18% (6 out of 32) managed to translate “3𝑛 −
4𝑚 = 60” in terms of restrictions on 𝑛 and 𝑚, that is, 𝑛 
and 𝑚 must be multiples of 4 and 3, respectively, with 
𝑚>0 and 𝑛>20. This indicates a disconnect between the 
use of literal language in the context of arithmetic and 
the particular meaning, for each of the lengths 𝑛 and 𝑚, 
in the context of geometry. This finding reflects 
difficulties associated with the representation-
signification processes. 

Problem 3. Area of triangles 

Eighty-four percent of the teachers (27 out of 32) 
associated the symbolic-literal writing “𝐷2 = 𝑥2 − 𝑥𝑦” 
with a quadratic function (24 teachers) or with a function 
with two variables (3 teachers). This reveals an 
interpretation of the formula without the geometrical 
context, which is linked to the conventional use in 
school, where letter “𝑥” usually represents the 

independent variable in functions of real variables, and, 
in the university environment, “𝑥” and “𝑦” are 
commonly independent variables of functions of several 
variables. Therefore, an absence of contextual meaning 
is detected, associated with the geometric interpretation 
of function D for each particular circumference of radius 
“𝑥”. This indicates that representation-signification 
processes are not carried out appropriately. 

Teachers did not recognize that the given geometric 
representation corresponded to only one (material, 
ostensive) representative of the set of all semi-
circumferences with diameter 2𝑥, so “everyone” 
(intensive) met the same condition: the triangle of 
maximum area is the isosceles triangle whose base is the 
diameter and height is the radius (x). The prevailing idea 
is that this is a particular case, in which 𝑥 is unknown, 
and not a general case, in which 𝑥 is a parameter that 
allows describing a family of semi-circumferences. 
Moreover, these teachers did not distinguish between 
the function of “𝑥” as a parameter (for each 
circumference) and that of “𝑦” as an independent 
variable (height that makes the areas of all possible 
triangles vary). In other words, these teachers showed an 
inappropriate application of the decomposition-
reification process that relates the parameter-variable as 
a system, where these objects are explained one in 
relation or in opposition to the other. 

Problem 4. Radius of the earth 

Sixty-eight percent (22 out of 32) stated that the 
function does not depend on r and that, therefore, the 
result is not exclusive to the terrestrial case, but it can be 
applied to any sphere, which evidences the occurrence 
of particularization-generalization processes. From the 
correct resolution, it can also be noted that the teachers 
understood the meaning of the proposed ideograms, 
which allowed them to transcend the material 
representation of the earth and the equator, 
demonstrating the realization of representation-
signification processes.  

However, 87% (28 out of 32) of the teachers did not 
identify the function as constant. This fact is contrary to 
the correct interpretation of the model, which allows 
stating that the extended ropes are equally separated 
from the sphere, regardless of its radius. The modeling 
process of the teachers is not evident. On the other hand, 
34% (11 out of 32) associated the term “intuition” with 
“ease” in solving mathematical tasks and not with 
understanding how the difference in radii varies. 

From the analysis of the answers, we conclude that, 
in addition to the processes of particularization-
generalization and representation-signification, it is 
essential to consider the processes of decomposition-
reification for the development of algebraic reasoning. 
The latter are crucial in order to obtain unitary objects 
that harmonize object systems. In fact, objects can be 



Gaita et al. / Mathematical processes for the development of algebraic reasoning in geometrical situations 

 

10 / 14 

represented with different languages and, thus, their 
meaning as an articulated whole might be compromised 
if a “new” object is not constructed to unify them.  

Finally, it has been observed that adequate modeling, 
which implies a representation and manipulation of the 
mathematical model, does not in itself guarantee a 
correct interpretation in terms of the situation. This way, 
the importance of the subprocess of interpretation is 
highlighted, defined herein as the mathematical process 
that gives meaning to a mathematical model, beyond an 
operative and discursive practice restricted to a specific 
situation. Thus, interpretation in problem four requires 
stating that “if one meter is added to the length of a great 
circle (particularly, the equator) of any sphere, then the 
circumference concentric with the great circle formed by 
the new length has a radius that is approximately 15 cm 
larger”. This statement not only generalizes the given 
problem, but also gives it a new meaning: not only is the 
radius constant, but the effect is the same for any sphere, 
whether it is a pea or the earth. The latter was verified, 
both by the absence of answers to the questionnaire 
reflecting this statement, and by the subsequent 
discussion with the whole group. Along these lines, it 
can also be noted that such a result goes against what 
intuition suggests. 

Relational Analysis of the Answers to the Problems 

The results observed and detailed “question by 
question” in the previous section reveal four 
fundamental processes in the development of algebraic 
reasoning: particularization-generalization, 
representation-signification, decomposition-reification, 
as well as the complex process of modeling. In this 
section, the answers are related in order to outline 

distinctive “profiles” among the teachers to help 
understand the answers provided in general.  

Since this is a DBR, variables are defined from the 
answers given in each problem. These isolated results 
are then linked by means of statistical implicative 
analysis (Gras et al., 2008). Table 1 describes the 
variables considered; their names follow the same 
structure: they begin with “P1, P2, P3, or P4”, which 
represent the problem they refer to, and then one or two 
characters are added to allow their precise identification.  

The similarity graph (Figure 8) allows us to establish 
3 groups of related variables, which determine different 
behaviors that we will call numerical, consolidated 
algebraic, and pedagogical or unconsolidated algebraic.  

● Group 1. Numerical. This group only relates 
variables of problem 1 and problem 4. In regards to 
problem 1, a resolution based on numbers and not on 
the configurations themselves (P1n) gives two types 
of error by establishing a formation rule that is not 

Table 1. Variables identified in the answers 

Question Variable Description 

1 P1n It reasons based on manipulating numbers and not on graphical representation. 
P1f It reasons according to the figures and geometric patterns seen in them. 

P1e1 [Error] It gives a recursive formula that multiplies the previous one by 2. 
P1e2 [Error] It gives a formula to an=2n. 
P1e3 [Error] It gives a formula to an=2n. 
P1ok [Correct answer] It gives a formula to an=2n-1. 
P1g It provides an answer based on procedures, calculations, or generic knowledge, without tackling the 

given problem. 

2 P2n [Correct answer] It points out that m and n do NOT take unique values. 
P23 [Correct answer] It provides 3 specific examples. 
P2m [Correct answer] It states that m and n must be multiples of 4 and 3, respectively. 
P2r [Correct answer] Its sets restrictions on the value of m > 0 and n > 20. 

3 P32 [Error] It points out that the given function is a 2-variable function. 
P3c [Error] It points out that it is a quadratic function. 

4 P4c [Correct answer] It indicates that the function is constant. 
P4ok [Correct answer] It gives the value (1/2𝜋)m or 15.9 cm. 
P4n [Correct answer] It provides a correct justification, indicating that the answer does not depend on the 

radius. 
P4l [Error] It points out that the given function is a linear function. 
P4i It points out that intuition is related to the resolution and not to the context. 

 

 
Figure 8. Similarity graph (Source: Authors’ own 
elaboration) 
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contrasted with the particular cases available (P1e1 
and P1e2). In regards to problem 4, the variables refer 
to the identification of the constant function obtained 
(P4c), to the explanation of a justification of this 
identification (“does not vary according to r”, P4n) 
and, therefore, to a correct resolution (P4ok). 
However, there is no interpretation of the meaning of 
radius independence. All of this is indicative of a 
level of algebraic reasoning where the processes of 
generalization, signification, reification, and 
interpretation are not mobilized with flexibility in 
contexts that are not usual in the school environment.  

● Group 2. Consolidated algebraic. This group is the 
only one that relates variables of the 4 problems, 
providing in general correct answers (P1ok, P2n, P23, 
P2m, and P2r) or answers related to the specific 
activity (P4i). The only related error is that they point 
out that the solution function of problem 3 is a two-
variable function (P32), which shows a lack of 
differentiation between variable and parameter. In 
spite of this, the teachers contributing to this group 
show a balance between the four dual processes 
identified, and they do so in a stable manner 
throughout the questionnaire.  

● Group 3. Pedagogical or unconsolidated algebraic. This 
group relates variables only from problems 1, 3, and 
4. However, unlike group 2, their answers are 
incorrect for the three problems (P1e3, P3c, and P4l), 
and they also lack operational sense (P1f and P1g). 
Likewise, the answers given follow a principle of 
“expectation”, according to which “it is presumed 
that the answer must be based on algebraic 
reasoning, and school indicators of the same are 
shown without meaning”. This is why this group is 
called “pedagogical”, since this type of “answer by 
expectation assumption” is not specific to 
mathematics, but to any training course regardless of 
the content.  

The implicational graph (Figure 9) reveals that the 
correct answers establish a strong network between the 
variables associated with tasks 1, 2, and 4. This suggests 
that problem 3, where the use of letters is “not from 
school”, has been particularly problematic and required 
specific measures to develop the dual processes of 
representation-signification. 

Another result that emerges from the implication 
graph is the direction of the implication between the 
variables in problem 1 and problem 4. A priori we would 
expect a lower success rate in the last problem than in 
the first one, which would take the form of an 

implication P4ok→P1ok. However, the experimental 
data show a reverse implication, which means that 
problem 1 has had a lower success rate. This is explained 
by the fact that generalization from particular data is not 
evident and, therefore, what is determinant in this 
problem–more than the context or type of task–is the fact 

that the operative practice is far from the classical school 
activity, where the formula of the general term is usually 
determined by stereotyped procedures.  

Finally, there are no chains of statistical implication 
between variables in more than two problems. This is 
evidence that, beyond the context of mathematical 
activity (in this case, geometric), what is essential are the 
operative and discursive processes linked to algebraic 
practices centered exclusively on symbolic 
manipulation. Thus, the lack of chains of implications 
between variables is a sign of an inflexible handling of 
the mathematical processes common to the four 
problems. 

The following section provides some 
recommendations for teaching aimed at the consistent 
mobilization of mathematical processes for the 
development of GAR.  

SYNTHESIS, IMPLICATIONS FOR 
SECONDARY EDUCATION TEACHER 
TRAINING AND OPEN ISSUES 

This paper expands the notion from EAR to GAR, 
which can be succinctly described as the mathematical 
practice involving the processes of particularization-
generalization, representation-signification, 
decomposition-reification, as well as the complex 
process of modeling (mathematization-interpretation). 
Modeling integrates two dual sub-processes: 
mathematization-interpretation, the former consists of 
the abstraction of relevant information, either from an 
extra- or intra-mathematical context, to create and apply 
a model; and the latter refers to the reconversion of the 
mathematical result of the model to the original 
situation. Both sub-processes require a clear 
understanding of both contexts and the relationship 
between them.  

In OSA, these processes have been defined and used 
to describe operational, discursive and regulating 
practices, with the exception of the dual process called 
“interpretation” which we associate here with modeling. 
These theoretical assumptions are contrasted through 
experimentation by analyzing the mathematical activity 

 
Figure 9. Implied graph at 95% (red), 90% (blue), and 85% 
(green) (Source: Authors’ own elaboration) 
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in problem solving in geometric contexts by practicing 
teachers. Under the perspective of didactic engineering 
(Godino et al., 2014a), the prediction made is contrasted 
with the experimental results, which allows us to draw 
implications for teacher training related to the 
mathematical processes of GAR.  

● Particularization-generalization. Inductive 
reasoning (from particular cases to determine a 
general rule) or deductive reasoning (from a general 
law to determine the behavior in specific cases) are 
key in mathematics and require specific work where 
these processes are no longer routine and require 
specific means of control, as in problem 1. 

● Representation-signification. In mathematics, 
ostensive objects are loaded with information, 
beyond the context in which they are used. For 
example, “x” represents an independent variable and 
“y” a dependent variable. However, this is no more 
than a convention based on a “linguistic economy” 
strategy. Problem 3 shows that in teacher training 
there is a need for an action that differentiates 
“convention” from “significance”. Moreover, this 
would have an impact on the development of STEM 
projects, where the notation in physics, for example, 
usually differs from the one used in mathematics. 

● Decomposition-reification. In classical teaching, 
algebra is associated with the resolution of equations, 
systems of equations, manipulation of polynomial 
functions (linear or quadratic at first). However, 
symbolic manipulation in other contexts, where 
relationships between variables are presented, 
should allow, on the one hand, improving the formal 
use of language and, on the other hand, obtaining 
unitary objects that structure the system of 
mathematical objects. Thus, in problem 2, teachers 
are required to interpret geometric length 
relationships by means of multiplicity properties of 
natural numbers and restrictions of measures, typical 
of the geometric context. This requires a flexible 
articulation of the processes of decomposition-
reification. 

● Modeling (mathematization-interpretation). 
Algebra has been studied as a modeling tool 
(Strømskag & Chevallard, 2022). In teacher training, 
this perspective should be introduced, emphasizing 
“back to context”. Problem 4 is an example showing 
that a correct mobilization of the model does not 
necessarily imply a deep understanding of the 
situation. This is because, although teachers were 
able to point out the independence of the radius in 
their resolution, they did not conclude that the effect 
of adding one meter to the length of the perimeter 
would equally affect a pea and the earth.  

Finally, we have exemplified how algebraic 
reasoning mediates geometric activity. Thus, GAR goes 
against a reductionist perspective of the curriculum, 

which seeks to identify the key mathematical processes 
of algebraic reasoning that allow the introduction and 
development of different domains of the curriculum. In 
other words, this GAR perspective allows algebra to be 
assumed as the backbone of the curriculum, connecting 
the different domains and, therefore, reinforcing the 
relational or systemic character of mathematics. 
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