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Abstract 

In a vector calculus course, the mathematical connections made by an in-service teacher and his 

engineering students in problems-solving involving vectors and partial and directional derivatives 

were explored. This study is relevant due to the difficulties in connecting multiple representations 

and meanings of ordinary and partial derivatives. Networking between the extended theory of 

connections and the onto-semiotic approach was used. The qualitative methodology included 

three stages: (1) selection of participants (in-service teacher and students), (2) data collection in 

four moments: design of the class on partial and directional derivatives and then, the development 

of this applying participant-observation and recording, design of a questionnaire and its 

application to the students, and (3) data analysis using theoretical tools. The results showed that 

the in-service teacher used various connections, starting with the instructional oriented and then 

others such as meaning, procedural and representations. Students defined and represented 

vector, partial and directional derivatives concepts, activating meaning connections and different 

representations. Also, they solved tasks using different connections (different representations, 

procedural, feature) to find partial and directional derivatives, gradient, curl and divergence. This 

analysis was carried out in terms of mathematical practices, processes, objects and semiotic 

functions. 72% of the students gave meaning, represented and appropriately used the concepts 

of vector calculus, while 28% had difficulties, especially in the procedural connection to find partial 

derivatives. 

Keywords: mathematical connections, vector, partial and directional derivative, vector calculus, 

teacher, students 

 

INTRODUCTION 

Calculus is a relevant area of mathematics with 
numerous connections within its own concepts and with 
other subjects, especially, it illustrates the versatility and 
importance of mathematics in other sciences, 
engineering, economics, among others (Fuentealba et al., 
2018; Park et al., 2015; Rodríguez-Nieto et al., 2024; Yu et 
al., 2023). Some key connections in calculus focus on the 
following.  

1. The relationship between differentiation and 
integration as inverse processes, emphasizing the 

fundamental theorem of calculus (García-García 
& Dolores-Flores, 2019).  

2. Relationships between a powerful set of tools to 
understand and analyze geometric shapes, 
symbols and their properties. For example, 
derivatives can be used to find slopes of curves, 
tangent lines, and rates of change, while integrals 
can be used to find areas under curves and 
volumes of solids of revolution.  

3. Vector calculus extends calculus to multivariable 
functions, connecting vector fields, integrals, curl, 
divergence, and curvature (Borji et al., 2024). It is 
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fundamental in electromagnetism, fluid 
dynamics, and engineering applications. 

It is recognized in research on univariate calculus that 
students, pre-service mathematics teachers, and in-
service mathematics teachers (IMT) face difficulties in 
connecting the meanings of derivatives and their 
representations, which impacts concepts such as the 
instantaneous rate of change (Kertil & Gülbağcı Dede, 
2022; Pino-Fan et al., 2018) and graphical transitions 
between derivatives and antiderivatives (Borji et al., 
2018; Fuentealba et al., 2018; Martínez-Panell et al., 2015). 
Some authors (Font, 2000; Galindo-Illanes & Breda, 2024; 
García-García & Dolores-Flores, 2021; Rodríguez-Nieto 
et al., 2023a, 2023c) highlight difficulties in deriving f′ 
from the graphs of f due to reliance on algebraic 
representations and tabular procedures, which 
complicates graphical visualization and interpretation. 

Studies reveal that mathematics and engineering 
students struggle with understanding and applying 
derivatives (Ikram et al., 2020). Bingolbali et al. (2007) 
noted that engineering students often view derivatives 
as rates of change, while mathematics students focus on 
their geometric interpretation as slopes of tangent lines. 
Zandieh et al. (2000) highlighted students’ fragmented 
knowledge of derivatives, lacking awareness of their 
conceptual connections. Recent research emphasizes 
persistent difficulties, suggesting the need to address 
these challenges through enhanced meanings, 
representations, arguments, and application problem-
solving strategies (Font & Rodríguez-Nieto, 2024; 
Galindo-Illanes et al., 2024). 

Research on multivariable calculus highlights the 
complexity of partial derivatives, emphasizing the need 
to teach connections between concepts. Martínez and 
Vinuesa (2022) found these links challenging for first-
year students, particularly when exploring real 
functions of two variables graphically, underscoring the 
importance of fostering understanding in calculus. 
Furthermore, “it is common, for instance, for them to 
think that the existence of partial derivatives 𝑓𝑥(𝑎, 𝑏) 
and 𝑓𝑦(𝑎, 𝑏) implies that the plane 𝑧 − 𝑓(𝑎, 𝑏) =

𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎) + 𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏) is a tangent plane to the 

surface 𝑧 = 𝑓(𝑥, 𝑦) at (𝑎, 𝑏, 𝑓(𝑎, 𝑏)) and so f is 
differentiable at (𝑎, 𝑏)” (Martínez & Vinuesa, 2022, p. 
733). Also, emphasis should be placed on the geometric 

representations of partial derivatives where students 
must identify and imagine the planes to 𝑥 = 𝑐 and 𝑦 = 𝑐, 
as well as the surface of the curve (Wangberg & Johnson, 
2013; Wangberg et al., 2002).  

Thompson et al. (2006, 2012) highlighted students’ 
difficulties in connecting physical context with 
mathematics, particularly in interpreting meanings of 
partial derivatives in physics. To address this, activities 
with a didactic-mathematical approach were designed to 
enhance understanding of partial derivatives in 
thermodynamics and graphically interpret mixed partial 
derivatives (Bajracharya et al., 2019; Thompson et al., 
2012). Calculus should go beyond operations and 
graphs, adopting a STEM approach that integrates 
symbolic, graphical, verbal, and numerical 
representations in physics. Poor understanding of 
derivatives and their applications underpins these 
efforts. In thermodynamics, partial derivatives are often 
confusing, as students struggle to relate small numerical 
differences to solve problems effectively (Dray et al., 
2019; Roundy et al., 2015). 

Martínez-Planell et al. (2015) interconnected various 
concepts of multivariable calculus (slope, tangent plane, 
partial and ordinary derivatives, directional derivative, 
etc.) through local linearity, using genetic decomposition 
from the APOS theory. Moreno-Arotzena et al. (2021) 
emphasized how different representations and their 
interconnections enhance the learning of gradients in 
functions of two variables. Additionally, understanding 
covariational reasoning in rate of change is crucial, as it 
extends beyond two-variable functions to directional 
derivatives (Weber, 2015; Weber et al., 2012). McGee and 
Moore-Russo (2015) showed that students grasp partial 
derivatives and vector calculus concepts better when 
they consider the slope of a line in space as fundamental. 
Martínez-Planell et al. (2017) confirmed that using 
tangent planes helps students in learning partial and 
directional derivatives, improving graphical 
interpretation in multivariable calculus. 

The difficulties of students in problems-solving with 
partial and directional derivatives, gradient, curl, among 
others, are also due to the fact that students still continue 
to present difficulties in understanding the concept of 
vector, operating with vectors, finding the norm, the 
vector and scalar product, angles, etc. (Barniol & Zavala, 

Contribution to the literature 

• This research contributes to the science and teaching and learning processes of vector calculus through 
the use of mathematical connections when engineering students solve problems related to vector, partial 
and directional derivatives. 

• Also, the special role of mathematical connections used by the in-service teacher when solving problems 
with partial derivatives is presented, encouraging student participation. 

• The onto-semiotic analysis of mathematical connections presented in this article is important because it 
shows details in mathematical practices, configurations and semiotic functions (SFs) in problems-solving 
with partial derivatives, curl and divergence. 
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2016; Flores-García et al., 2007; Possani et al., 2010; 
Rakkapao et al., 2016; Rodríguez-Nieto et al., 2024; 
Salgado & Trigueros, 2014; Susac et al., 2018). This 
problem is not new. Research shows that the vector 
concept is fundamental yet challenging. University 
students struggle to define and apply it, as their prior 
training focused on solving mechanized, non-
contextualized problems in calculus, lacking connections 
with other fields like physics (Flores et al., 2017; 
Gutierrez & Martín, 2015). 

Tairab et al. (2020) identified difficulties in learning 
the concept of vectors, such as a lack of conceptual 
understanding and issues with procedures for obtaining 
vector and scalar products. Students often perform 
calculations without understanding the connections 
between magnitude, direction, and quantities, limiting 
their ability to connect conceptual and procedural 
aspects. This impacts problem-solving skills, such as 
finding directed segments or norms. While some excel in 
vector operations, others fail to integrate conceptual, 
representational, and procedural aspects, complicating 
their overall understanding (Cárcamo et al., 2023; 
Rodríguez-Nieto et al., 2024). It has been recognized that 
Rodríguez-Vásquez et al. (2024) addressed the concept 
of vector in the new Mexican school because teachers 
and students experience significant challenges for their 
teaching and learning, that, in fact, the difficulties 
remain when students must perform operations and 
representations. 

After reviewing the literature on the importance of 
calculus in one variable and several variables, it was 
found that it is an important branch of mathematics for 
students, mathematics teachers and is used in other 
careers such as engineering, economics, physics, 
chemistry, etc. However, due to the complexity of the 
mathematical objects involved in vector calculus or in 
several variables, students have difficulty graphing 
vectors in ℝ2 and ℝ3, perform operations with vectors, 
perform ordinary and partial derivatives, apply the 
chain rule for composite functions, and solve application 
problems. These difficulties occur due to the various 
errors that students make and that can be caused by not 
making necessary mathematical connections where 
representations, procedures, and definitions are 
involved in the resolution of extra-mathematical 
problems (Cárcamo et al., 2023; Rodríguez-Nieto et al., 
2024). Therefore, the research aim is to explore the 
mathematical connections that a mathematics teacher 
and his engineering students activate when problems-
solving about vectors, partial derivatives and 
applications. 

THEORETICAL FRAMEWORK 

Extended Theory of Connections 

In this theory, a mathematical connection is 
understood from view of the extended theory of 
connections (ETC) and the onto-semiotic approach 
(OSA) as the tip of an iceberg made up of a conglomerate 
of practices, processes/objects (problem situations, 
languages, procedures, propositions, definitions, and 
arguments), and SFs that relate them (Rodríguez-Nieto 
et al., 2022a). The connections are important for 
mathematical understanding. Likewise, mathematical 
connections can be intra-mathematical “are established 
between concepts, procedures, theorems, arguments and 
mathematical representations of each other” (Dolores-
Flores & García-García, 2017, p. 160), and extra-
mathematical connections, which “establishes a 
relationship of a mathematical concept or model with a 
problem in context (not mathematical) or vice versa” 
(Dolores-Flores & García-García, 2017, p. 161). Extra-
mathematical connections are based on intra-
mathematical connections and are important for 
students and in-service teachers in problems-solving in 
the classroom (De Gamboa et al., 2020). Mathematical 
connections are one of the mathematical processes that 
foster mathematical creativity (Sánchez et al., 2022). Each 
of the mathematical connections of the ETC is described 
below (Figure 1). 

1. Modelling: It refers to the relationship that a 
person establishes between the world of 
mathematics and the real world (or the daily life 
of students) and between mathematics and other 
sciences. It can be understood as the connection 
formed between a mathematical concept and a 
real-world task (either occurring or potentially 
occurring in everyday life) or a practical 
application in a field outside of mathematics. In 
this process, the subject constructs a mathematical 
model based on the task of finding a solution. 
When the subject builds the mathematical model, 
he uses various knowledge (mathematical or not) 
by executing multiple actions (algebraic, 
symbolic, graphic, etc.) to reach an answer 
consistent with the requirement posed (Campo-
Meneses & García-García, 2023; Dolores-Flores & 
García-García, 2017; Evitts, 2004).  

2. Instruction-oriented: It refers to the 
understanding and application of mathematical 
concept D derived from two or more related 
concepts, B and C. These connection types can be 
recognized in two forms:  

(1) the relationship of a new topic with previous 
knowledge, and  

(2) the mathematical concepts, representations, 
and procedures connected are considered 
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fundamental prerequisites that people must 
have to develop new content (Businskas, 2008).  

For example, when the teacher explains to the 
students that, in order to work on the partial 
derivative of a function, they must first recall the 
concepts of functions, limits, the global derivative, 
and the slope of a line. 

3. Procedural: This connection is one of the most 
used by people and is evident when rules, 
algorithms, or formulas are used to arrive at a 
result (García-García, 2019). For example, to find 

the solutions of a quadratic equation 𝒂𝒙𝟐  +  𝒃𝒙 +

 𝒄 =  𝟎 you can use the formula 𝒙 =
−𝒃±√𝒃𝟐−𝟒𝒂𝒄

𝟐𝒂
. 

4. Part-whole: This connection is identified when it 
is institutionally assumed that A is a 
generalization of B, where B is a particular case of 

A. For example, the function 𝑷(𝒙) =  𝟑𝒙𝟑 − 𝟐𝒙𝟐 −
𝟕𝒙 − 𝟓 is a particular case of the general 

expression 𝒇(𝒙) =  𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅. These 
relationships can be of inclusion when a 
mathematical concept is contained in another 
(Businskas, 2008).  

5. Implication: This connection is based on a logical 
relationship if-then (𝑃 → 𝑄) (Businskas, 2008; 
Mhlolo, 2012). If a function 𝒇 is increasing on an 
open interval (𝑎, 𝑏), then 𝒇′ is positive on that 
same interval. 

6. Different representations: These mathematical 
connections can be alternate or equivalent. It is 
alternate if a person represents a mathematical 
concept in two or more different ways in different 
registers of representation: graph-algebraic, 
verbal-graph, etc. (Businskas, 2008). For example, 
an alternate representation is shown in Figure 2, 

where the vector �⃗⃗� = 𝟏𝟏𝒊 + 𝟖𝒋 + 𝟏𝟎𝒌 graphed. 

While an equivalent representation involves a 
transformation within the same register, such as 
algebraic to algebraic, graph to graph, or symbolic 

to symbolic. For example, �⃗⃗� = 𝟏𝟏𝒊 + 𝟖𝒋 + 𝟏𝟎𝒌 is 

equivalent to �⃗⃗� = 〈𝟏𝟏, 𝟖, 𝟏𝟎〉 in the algebraic or 
symbolic semiotic register. 

7. Feature: It is identified when the person manifests 
some characteristics of the concepts or describes 
its properties in terms of other concepts that make 
them different or similar to others (Eli et al., 2011; 
García-García & Dolores-Flores, 2019). For 
example, when the person mentions some 
elements of a polynomial function 𝒇(𝒙) = 𝒂𝒏𝒙

𝒏 +

𝒂𝒏−𝟏𝒙
𝒏−𝟏 + 𝒂𝒏−𝟐𝒙

𝒏−𝟐  + ⋯+ 𝒂𝟎 (derivative 
function or antiderivative function) are 
coefficients (all, 𝒂𝒊, with 𝒊 = 𝟎, 𝟏, 𝟐, 𝟑, … , 𝒏), literal 
or variables (in this case, the “𝒙”) and exponents 
of the variables (𝒏, 𝒏 − 𝟏, 𝒏 − 𝟐,… , 𝟏). 

8. Meaning: This connection is activated “when 
students attribute a meaning to a mathematical 
concept as long as what it is for them (which 
makes it different from another) and what it 
represents; it can include the definition that they 

 
Figure 1. Synthesis of ETC (Rodríguez-Nieto et al., 2024) 

 
Figure 2. Connection between different representations 
(alternate) (Leithold, 1998, p. 828) 
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have built for these concepts” (García-García, 
2019, p. 131). Likewise, students or teachers 
express what the mathematical concept means to 
them, including their context of use or their 
definitions (García-García, 2019, p. 131). We 
recognize the existence of a mathematical 
connection between meanings, which is also 
activated when a person applies these meanings 
to solve a problem. For example, “the derivative 
𝒇′(𝒂) is the instantaneous rate of change of 𝒚 =
𝒇(𝒙) with respect to 𝒙 when 𝒙 = 𝒂” (Stewart, 199, 
p. 153). 

9. Reversibility: It is present when a student or 
teacher starts from a concept P to get to a concept 
Q and invert the process starting from Q to return 
to P (García-García & Dolores-Flores, 2021). This 
connection is activated when the fundamental 
theorem of calculus is used to link both concepts, 
and when the person establishes a bidirectional 
relationship between the derivative and the 
integral as operators. 

10. Metaphorical (MT): It is understood as the 
projection of the properties, characteristics, and 
other aspects of a known domain to structure a 
less familiar one. For instance, when a teacher or 
student uses verbal expressions like “travel 
through the graph without lifting the pencil from 
the paper”, they implicitly evoke the conceptual 
metaphor “the graph is a path” (Rodríguez-Nieto 
et al., 2022b). 

11. MT connections based on mnemonics: This 
connection is “understood as the relationship 
established by the subject between a mnemonic 
rule (often a familiar resource) and a mathematical 
object, rule, or mathematical procedure to 
memorize and use strategically more easily” 
(Rodríguez-Nieto et al., 2024, p. 18). These types 
of connections are both inclusive and recursive, 
with three key elements to consider:  

(1) keywords that are similar to the word (or term) 
being referenced,  

(2) acronyms, which are formed when the first 
letter of each word in a list is used to construct 
a new word, and  

(3) acrostics which consist of constructing a 
sentence, where the first letter of each 
constitutes the term studied (Mastropieri & 
Scruggs, 1989; Rodríguez-Nieto et al., 2024). 

12. Idealizing: This connection relates an ostensive to 
a non-ostensive. Its function is to dematerialize 
the ostensive and turn it into an ideal 
mathematical object (for example, the bottom of a 
rounded tank is considered circle/circumference) 
(Ledezma et al., 2024). 

This theory of mathematical connections can 
continue to be extended and the work of Cantillo-Rudas 

et al. (2024) stands out, where they report new 
developments on neuro-mathematical connections 
associated with the cognitive part of this theory and the 
assessment of the brain areas activated in a person’s 
mathematical activity. 

Onto-Semiotic Approach  

The OSA is a theoretical approach that has impacted 
research in mathematics didactics due to its special tools 
to improve the teaching and learning processes of 
mathematics that involve geometry, statistics, calculus, 
textbook analysis, didactic suitability, etc. In addition, it 
assesses the person’s mathematical knowledge 
considering epistemology, anthropology and the 
ontology of mathematical objects. This approach arose 
from the need to clarify, connect and improve theoretical 
and methodological notions of various theories and it is 
essential to describe mathematical activity from an 
institutional or personal perspective, modeled in terms 
of practices and configuration of objects and primary 
processes activated in said practices (Drijvers et al., 
2013). 

Mathematical practice is understood as “any 
situation or expression (…) carried out by someone to 
solve mathematical problems, communicate the solution 
obtained to others, validate it or generalize it to other 
contexts and problems” (Godino & Batanero, 1994, p. 
334). This practice includes objects used in a broad sense 
to refer to any entity that is involved in mathematical 
practice and is identified as a unit (Font et al., 2013). 
Furthermore, six main objects are considered:  

(1) problem situations,  

(2) languages,  

(3) definitions,  

(4) propositions,  

(5) procedures and  

(6) arguments.  

These interconnected objects form the configuration 
of primary objects (Godino et al., 2019). 

In mathematical practice, primary objects emerge in 
various ways, shaped by different modes of seeing, 
speaking, operating, and more. This diversity enables us 
to categorize them as personal or institutional, ostensive 
or non-ostensive, unitary or systemic, intensive or 
extensive, and content or expression. Now, a 
configuration is a heterogeneous set or system of 
interrelated objects, which can be institutional 
(epistemic) or personal (cognitive) (Godino et al., 2019).  

The set of primary objects arises in mathematical 
activity through the activation of fundamental 
mathematical processes (communication, problem 
setting, definition, enunciation, procedures (algorithms) 
and argumentation to justify the procedures) triggered 
by the application of the process-product vision to said 
primary objects, which occur together with those 
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derived from applying the process-product duality to 
the five dualities (institutional/personal, ostensive/non-
ostensive, expression/content, extensive/intensive and 
unitary/systemic): personalization-institutionalization, 
materialization-idealization, representation-meaning, 
synthesis analysis, and generalization-particularization 
(Font et al., 2013; Godino et al., 2007), see Figure 3. 

In the OSA, SF is also considered fundamental, which 
gives the opportunity to associate practices with 
activated processes and objects and the construction of 
an operational notion of knowledge, mathematical 
understanding, meanings and competencies and other 
primary objects (Godino et al., 2007). An SF is a triadic 
relationship between an antecedent (expression/object) 
and a consequent (content/object) carried out by a 
person (person or institution) according to a specific 
criterion or correspondence code (Font, 2007), 
establishing not only unidirectional but bidirectional 
relationships between two objects. SFs are inferred when 
mathematical activity is seen from the 
expression/content duality, among others. The notion of 
SF (OSA) is more general than the notion of 
mathematical connection (ETC) since connections are 
considered particular cases of SF of a personal or 
institutional nature. In the ETC, the mathematical 
connection can be true or not, revealing from the 
perspective of OSA that when a subject makes a correct 
connection, it coincides with the institutional one, while 
when the connection is incorrect, it is personal 
(Rodríguez-Nieto et al., 2022a). 

Godino emphasized the importance of addressing 
the meanings of mathematical objects by individuals in 
specific contexts, highlighting the semiotic-cognitive 
issue, which is connected to knowledge defined in the 
OSA as the “set of” relationships that the subject (person 
or institution) establishes between objects and practices, 
relationships that are modeled through the notion of SF 
(Godino, 2022, p. 8). 

In this research, the ETC-OSA networking is used 
because the OSA allows for detailing mathematical 
connections in terms of practices, processes, objects, and 
SFs that relate them, which facilitates a deeper 
understanding of a topic related to a specific 
mathematical concept. Additionally, the ETC enables the 
use of typologies of mathematical connections. For this 
reason, this networking serves as a special framework 
for analyzing mathematical connections, which evolves 
and refines its tools as the research progresses 
(Rodríguez-Nieto et al., 2024). 

Synthesis of the Networking ETC-OSA 

Establishing a networking between two or more 
theories allows us to investigate and understand how 
their contributions can be successfully linked (or not), 
while respecting the conceptual and methodological 
principles that support them. Likewise, it helps to 
understand and detail the complexity of the phenomena 
involved in the teaching and learning processes of 
mathematics (Kidron & Bikner-Ahsbahs, 2015; Prediger 
et al., 2008). This research draws on the work of 
Rodríguez-Nieto et al. (2022a), who integrated the ETC 
and OSA frameworks. Their study focused on three 
aspects: the nature of mathematical connections in each 
theory, the exploration of connections in subjects written 
and verbal productions (operational and discursive), 
and a content analysis of key publications from both 
theories to identify principles, methods, and research 
questions. They also examined whether there are 
congruencies and complementarities between the ETC 
and OSA to broaden the understanding of connections. 
A detailed analysis of mathematical connections 
followed the integration method proposed by Drijvers et 
al. (2013), Kidron and Bikner-Ahsbahs (2015), and 
Radford (2008), which involved selecting and describing 
episodes to enhance the identification of mathematical 
connections using the ETC and OSA. 

In Rodríguez-Nieto et al. (2023b) data were analyzed 
in terms of practices, configurations of primary objects 
and SF that relate them as proposed by the OSA. 
Subsequently, parts of mathematical activity (e.g., 
practices, primary objects, and science fiction) were 
encapsulated as a type of connection proposed in the 
ETC (meaning, feature, procedural, part-whole, ...). It 
should be noted that, although the analysis methods are 
different (thematic analysis for the ETC and analysis of 
mathematical activity for the OSA), the main conclusion 
is that both theories work together to offer a deeper 
understanding of mathematical connections. The 
analysis conducted with OSA tools reveals a 
mathematical connection as the tip of an iceberg, 
metaphorically speaking. This “tip” consists of various 
practices, processes, primary objects activated in these 
practices, and related SFs. Through this approach, the 
structure and function of the connection are thoroughly 
examined.  

 
Figure 3. The schematization of mathematical knowledge 
from an onto-semiotic view (Font & Contreras, 2008). 
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In essence, OSA tools help uncover the complexities 
behind the seemingly simple mathematical connections, 
providing a detailed view of the interrelated elements 
that contribute to their formation (Rodríguez-Nieto et 
al., 2022a). 

This theoretical framework that emerges from the 
articulation between ETC and OSA is not only applied to 
concepts of differential calculus, but also to concepts 
from other subjects such as vector calculus (Rodríguez-
Nieto et al., 2024), ethnomathematical connections and 
geometry (Rodríguez-Nieto et al., 2023c), differential 
equations (Dans-Moreno et al., 2022), ethnomathematics 
and STEAM (Rodríguez-Nieto & Alsina, 2022). In this 
study, we will work with vectors, partial derivatives and 
applications that involve the chain rule, curl and 
divergence. 

METHODOLOGY 

This research is qualitative (Cohen et al., 2018) and 
developed in three stages: the first refers to the selection 
of study participants (a teacher and his students). The 
second refers to the data collection where four moments 
(m) were considered.  

1. m1: Design of a class on partial derivatives by the 
in-service teacher.  

2. m2: The teacher develops the class with his 
students, encouraging participation and use of the 
blackboard (applying participant-observation and 
recording).  

3. m3: Design of a questionnaire that involves 
vectors, partial and directional derivatives, curl 
and divergence.  

4. m4: Application of the questionnaire to students.  

The third stage refers to data analysis using the 
theoretical and methodological tools that emerged from 
the ETC-OSA networking (Rodríguez-Nieto et al., 
2022a). 

Participants and Context   

The participants in this research were: an IMT of 
vector or multivariate calculus who was 29 years old and 
had 10 years of work experience (with 5 years teaching 
calculus in higher education). This IMT has a degree in 
mathematics, a master’s degree and a PhD in 
mathematics education and focuses on calculus. He 
currently works at a private university on the Colombian 
Caribbean Coast. The other participants were 202 
engineering students (P1, P2, P3, …, P202) in their third 
semester (of ten required) enrolled in the subject of 
vector calculus (developed by the participating 
professor) from the same university (Figure 4). 

It should be noted that the students had already taken 
and passed the differential and integral calculus subjects 
where they developed topics such as ordinary 
derivatives, limits, functions, integrals, etc., which are 
important to successfully complete calculus in several 
variables. These students come from the city of 
Barranquilla and nearby municipalities or towns and 

 
Figure 4. Some study participants (Source: Field study) 
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their participation was voluntary, who agreed to 
participate in the project that does not have economic 
purposes but rather educational ones. 

Data Collection 

In the second stage referring to the collection of 
information, at m1 it is evident that the IMT prepares his 
class considering the topics suggested in the syllabus of 
the subject of vector calculus and textbooks such as 
Leithold (1998). Also, the IMT in his class uses 
PowerPoint slides to address definitions, theorems and 
propose problems and considers it important that, in 
solving the problems, different representations, 
propositions, definitions, arguments, etc. are activated. 
Furthermore, at m2 the researchers video-recorded 
(applying participant-observation) some episodes of the 
classes where the IMT explains topics about vectors, 
partial derivatives and directional derivative and 
gradient vector (Figure 5). 

It should be noted that the IMT encourages 
participation in the classroom so that students solve 
problems on the blackboard, interact with each other and 
with the teacher, considering it important for the 
participant to carry out step-by-step procedures. Now, if 
at any m a student proceeds incorrectly, the other 

students intervene to help him or the teacher states 
which connection has not been activated and based on 
the error, establishes the mathematical connection that 
leads to an appropriate procedure. 

Subsequently, at m3, a questionnaire was designed 
based on the topics addressed by the IMT, starting with 
a task about knowledge about vectors, partial 
derivatives (they were not considered for qualification 
the students’ questionnaire) and the problem-solving of 
directional derivative, curl and divergence (Table 1), 
considered for qualification. 

The criteria for creating the tasks proposed in Table 

1 are directly influenced by the problems identified in 
the literature review in the Introduction section and the 
difficulties that students present during classes. For 
example, in the preliminary task, the meaning of the 
partial derivative and its representations are promoted. 
In task 1, the directional derivative is determined by 
connecting concepts such as function in several 
variables, partial derivatives, unit vector, among others. 
In task 2, the importance of the gradient vector 
connected to the nabla vector, whose components are 
partial derivatives, is observed. Once again, in task 3, the 
emphasis is on students solving a problem on tangent 
planes that involves functions, partial derivatives, 
planes, tangents, slopes, among other concepts related to 

 
Figure 5. Explanation from the teacher in the classroom (Source: Field study) 

Table 1. Questionnaire with tasks 
No Task 

Preliminary For you, what is a vector and how is it represented? What does the partial derivative mean and how is it represented? The 
answers to these questions are shown in the first part of the results section, that is, before the temporal narrative. 

1 Calculate the directional derivative for the function 𝑓(𝑥, 𝑦) = 2𝑥2 + 5𝑦2 + 5𝑥3 − 8𝑦 in the direction 𝑈 = 𝑐𝑜𝑠 (
𝜋

4
) 𝑖 +

𝑠𝑖𝑛 (
𝜋

4
) 𝑗 and evaluate said derivative at the indicated point 𝐷𝑢𝑓(0,3). 

2 Calculate the gradient of 𝑤 evaluated at the indicated point: 𝑤(𝑥, 𝑦) = 𝑐𝑜𝑠(𝑥𝑦) + 𝑠𝑖𝑛(𝑥2𝑦) at the point 𝑃 = (1,
𝜋

4
). 

3 Find an equation of the plane tangent to the surface at the indicated point: 𝑧 = 𝑒3𝑥𝑠𝑖𝑛(3𝑦) at the point 𝑃 =

(0,
𝜋

4
, 1). 

4 Calculate the 𝑐𝑢𝑟𝑙(𝐹 (𝑥, 𝑦, 𝑧)) for the following vector field and evaluate at the indicated point: 𝐹 (𝑥, 𝑦, 𝑧) =

(𝑥2 + 𝑧2)𝑖 + 𝑥𝑒𝑦 cos(𝑧) 𝑗 − 𝑥𝑒𝑦 cos(𝑧) 𝑘;  𝑃 = (−2,0,
𝜋

4
). 

5 Calculate the divergence 𝑑𝑖𝑣(𝐹 (𝑥, 𝑦, 𝑧)) for the following vector field and evaluate at the indicated point: 

𝐹 (𝑥,  𝑦,  𝑧) = 2𝑥 𝑖 + 3𝑦2 𝑗 − 5𝑧3𝑘;  𝑃(1,2, −1). 
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calculus. Task 4 and task 5 were proposed to solve 
application problems by finding the curl and divergence 
of vector functions.  

These tasks take place in the subject of vector 
calculus, especially to develop unit 2 referred to the 
differential calculus of functions of more than one 
variable, whose learning result is: to use differential 
calculus in several variables to solve problems that 
strengthen the professional profile of the engineer. To 
achieve this result, the following performance indicators 
are proposed:  

(1) identifies the concepts and rules of the derivation 
of functions in several variables,  

(2) correctly explains operations with derivatives in 
space, and  

(3) solves problems of curl and divergence of vector 
fields.  

Finally, these tasks are aligned to achieve the 
objective of this research. 

Data Analysis 

The data analysis will be carried out based on the 
method of analysis of mathematical connections based 
on the networking between the ETC and the OSA, 
considering the narrative, mathematical practices, 
cognitive configuration, SFs and mathematical 
connections (Rodríguez-Nieto et al., 2024), see Table 2. 

Below, the results of mathematical connections 
established by the IMT and the engineering students are 
reported, following the analysis method presented in 
Table 2. 

RESULTS 

The results of this research are organized based on 
the participants’ mathematical activity, following the 
analysis method outlined in Table 2. To begin with, an 
example response for the preliminary task described in 

Table 1 is provided. Due to space limitations, a 
representative example from student P59 (in response to 
task 1) is highlighted, along with cases and written work 
from other students who approached the task similarly. 
Subsequently, examples from students who made errors 
stemming from disconnections or personal connections 
are presented 

Findings Obtained in the Application of the 
Preliminary Task 

Initially, all students were asked two questions: for 
you, what is a vector and how is it represented? What 
does the partial derivative mean and how is it 
represented? With the objective of knowing what the 
students were understanding about the fundamental 
concepts involved in the questionnaire. For example, 
P11, P24, and P84 recognized that a vector is a quantity 
that has magnitude, direction and direction and they 
represented it symbolically in a general way in ℝ𝑛 and, 
particularly in ℝ2 and ℝ3 (Figure 6).  

It is worth noting that students P81 and P84 
illustrated the vector 𝑣 . Furthermore, the students 
demonstrated an understanding of the partial derivative 
as the derivative of a multivariable function with respect 
to one of its variables (Figure 7). Notably, students P11, 
P35, and P59, among others, connected the concept of 
partial derivatives to their graphical representation. This 
indicates that the students have at least a foundational 
understanding of the geometric interpretation of this 
concept. 

In fact, student P90 explains the partial derivative in 
terms of other concepts such as the rate of change, which 
shows that he understands the slope of the line 
contained in the plane tangent to the surface (Figure 8). 

In the case of P84, other meanings of the partial 
derivative were evident considering the notion of limit. 

Table 2. Phases for analyzing data based on ETC integrated with OSA 
No Phases Description 

1 Transcription of class 
observations, interviews, 
and data organization 

The teacher and students’ written work was arranged in a way that allowed the researchers 
to become acquainted with their responses. Furthermore, this step is essential to guarantee 
that the researcher thoroughly examines, reads, and interprets the gathered information. 

2 Temporal narrative The student’s solution to the task is explained mathematically. It includes the actions 
performed by the student and highlights key primary objects identified in the narrative. The 
same is done with the in-service mathematics teacher. 

3 Mathematical practice The mathematical practices, or series of actions, are outlined and governed by rules 
established by institutions that are helpful for problem-solving. Within these practices, the 
underlying foundation of each mathematical connection in the ETC is clear. 

4 Cognitive configuration It is the system of primary mathematical objects that a subject mobilizes as part of the 
mathematical practices developed to solve a specific problem. In fact, these primary objects 
are a fundamental part of the connection because they are generally the beginning 
(antecedent) and end (consequent) of its structure. 

5 Semiotic functions SFs are established between the primary objects of the cognitive configuration. The 
mathematical connections suggested by the ETC are established and represented. 

6 Mathematical connections Report of mathematical connections from an articulated ETC-OSA view. 
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Temporal Narrative 

It will be exemplified with the narrative of P59 when 
he carried out task 1 of the questionnaire. In this context, 
P59 read and understood task 1 by identifying the 
function, the direction of vector U and the point (0, 3).  

 
Figure 6. Vector meaning and different representations 
(Source: Authors’ own elaboration) 

 
Figure 7. Meaning of the partial derivative and 
representations (Source: Authors’ own elaboration) 

 
Figure 8. Evidence of meaning, representation and exemplification on the partial derivative (Source: Authors’ own 
elaboration) 
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He considered the formula 𝐷𝑈𝑓(𝑥, 𝑦) = 𝑈 ∙  𝛻𝑓(𝑥, 𝑦) 
meaning that the directional derivative is equal to the 
dot product between the unit vector and the gradient of 
the function. P59 states that the previous formula is 
equivalent to the following formula: 𝑫𝑼𝒇(𝒙, 𝒚) =
(𝒄𝒐𝒔(𝜽), 𝒔𝒊𝒏(𝜽)) ∙ (𝒇𝒙(𝒙, 𝒚), 𝒇𝒚(𝒙, 𝒚)), stating that the 

gradient is a vector whose components are partial 
derivatives. Then, perform the dot product 𝑫𝑼𝒇(𝒙, 𝒚) =
𝝏𝒇(𝒙,𝒚)

𝝏𝒙
 𝒄𝒐𝒔 (𝜽) +

𝝏𝒇(𝒙,𝒚)

𝝏𝒚
𝒔𝒊𝒏 (𝜽) to find the directional 

derivative. Subsequently, take the function and the angle 

and substitute it into the formula: 𝑫𝑼𝒇(𝒙, 𝒚) =
𝝏

𝝏𝒙
(𝟐𝒙𝟐 +

𝟓𝒚𝟐 + 𝟓𝒙𝟑𝒚 − 𝟖𝒚)𝒄𝒐𝒔 (
𝝅

𝟒
) +

𝝏

𝝏𝒚
(𝟐𝒙𝟐 + 𝟓𝒚𝟐 + 𝟓𝒙𝟑𝒚 −

𝟖𝒚)𝒔𝒊𝒏 (
𝝅

𝟒
). P59 found the partial derivative of the 

function 𝑓 with respect to 𝑥, obtaining: 4𝑥 + 15𝑥2𝑦 and 
found the partial derivative of the function 𝑓 with 
respect to 𝑦, obtaining: 10𝑦 + 5𝑥3 − 8, and these 
derivatives were replaced in the formula. P59 

determined the values of 𝑠𝑖𝑛 (
𝜋

4
) =

√𝟐

𝟐
 and 𝑐𝑜𝑠 (

𝜋

4
) =

√𝟐

𝟐
 

and replaces them in the formula: 𝑫𝑼𝒇(𝒙, 𝒚) = (4𝑥 +

15𝑥2𝑦) (
√𝟐

𝟐
) + (10𝑦 + 5𝑥3 − 8) (

√𝟐

𝟐
). Then he applied the 

distributive property 𝑫𝑼𝒇(𝒙, 𝒚) = [(𝟒𝒙) (
√𝟐

𝟐
) +

(𝟏𝟓𝒙𝟐𝒚) (
√𝟐

𝟐
)] + [(𝟏𝟎𝒚) (

√𝟐

𝟐
) + (𝟓𝒙𝟑) (

√𝟐

𝟐
) − 𝟖(

√𝟐

𝟐
)] and 

simplifies it 𝑫𝑼𝒇(𝒙, 𝒚) = [(𝟐𝒙)(√𝟐) +
(𝟏𝟓𝒙𝟐𝒚√𝟐)

𝟐
] +

[(𝟓𝒚)(√𝟐) +
(𝟓𝒙𝟑)(√𝟐)

𝟐
− (𝟒√𝟐)]. P59 replaces the point 

𝑃 = (0,3) in the directional derivative 𝐷𝑈𝑓(0,3) =

[(2(0))(√2) +
(15(0)2(3)√2)

2
] + [(5(3))(√2) +

(5(0)3)(√2)

2
−

(4√2)] and then, applying arithmetic operations, they 

obtained the following: 𝐷𝑈𝑓(0,3) = 15√2 − 4√2 = 11√2. 

Using the example of narrative, P59’s mathematical 
practices are developed. 

Mathematical Practices 

IMT mathematical practices (MpIMT) 

Mp1IMT: IMT read and understood the problem 
proposed with his students, highlighting that he 
must first find the gradient of the function at 𝑃 =
(2, 1) and said that it is important to know how to 
derive, recognize the slope, the rate of change as 
requirements to address the partial derivation. 

Mp2IMT: IMT stated that the directional 
derivative is the rate of change of the function in 
the direction of a vector. 

Mp3IMT: IMT stated that the gradient is one 
whose components are partial derivatives and is 
represented as 𝛻𝑓. 

Mp4IMT: IMT stated that the partial derivative of 
a function of several variables is the derivative of 

a function with respect to one of its variables and 
the others are kept constant. 

Mp5IMT: IMT found the partial derivative of 𝑓 

with respect to 𝑥 obtaining 
𝜕(𝑥2𝑦3−4𝑦)

𝜕𝑥
= 2𝑥𝑦3. 

Mp6IMT: IMT evaluated the partial derivative 
with respect to x at the point 𝑃 = (2, 1), as follows: 
𝜕𝑓(2,1)

𝜕𝑥
= 2(2)(1)3 = 4, where he used 

multiplication and exponentiation. 

Mp7IMT: IMT found the partial derivative with 

respect to 𝑦, obtaining 
𝜕(𝑥2𝑦3−4𝑦)

𝜕𝑦
= 3𝑥2𝑦2 − 4.  

Mp8IMT: IMT found the partial derivative with 

respect to 𝑦, obtaining: 
𝜕𝑓(2,1)

𝜕𝑦
= 3(2)2(1)2 − 4 = 8 

(see excerpt from the video transcript of the class). 

IMT: Three times two to the power of two, times 
one to the power of two, minus 4, and how much 
does that give me? Two times two four, four times 
three twelve, twelve times one twelve, twelve 
minus four equals 8. 

Mp9IMT: IMT wrote the symbolic expression for 
the gradient of 𝑓 equal to: 𝛻𝑓(𝑥, 𝑦) =
(2𝑥𝑦3, 3𝑥2𝑦2 − 4), referring to the partial 
derivative with respect to 𝑥 (for the first 
component) and the partial derivative with 
respect to 𝑦 (for the second component), relating 
it to vector nabla. 

Mp10IMT: IMT wrote the symbolic expression of 
the gradient 𝑓 evaluated at 𝑃 = (2, 1) equal to: 
𝛻𝑓(2, 1) = (4, 8). 

Mp11IMT: IMT made a connection of equivalent 
representations of vector representation �⃗⃗� = 2𝑖 +
5𝑗 to rectangular coordinate representation �⃗⃗� =
(2, 5). 

Mp12IMT: IMT stated that it must look for a unit 

vector and, to do so, it must apply the formula �⃗⃗� =
�⃗⃗� 

‖�⃗⃗� ‖
 and first found the norm of �⃗⃗�  by substituting 

the components of the vector in the formula 

‖�⃗⃗� ‖ = √(2)2 + (5)2. 

Mp13IMT: IMT solved the powers of the radicand 

‖�⃗⃗� ‖ = √4 + 25. 

Mp14IMT: IMT He added the amounts of the 
radicand and stated that the norm of the vector 𝑤 

is: ‖�⃗⃗� ‖ = √29. 

Mp15IMT: IMT structured the unit vector in its 

vector representation: �⃗⃗� =
2

√29
𝑖 +

5

√29
𝑗. 
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Mp16IMT: IMT expressed the unit vector in an 

equivalent way �⃗⃗� = (
2

√29
,

5

√29
). 

Mp17IMT: IMT stated that it has obtained the unit 
vector, and the gradient evaluated at 𝑃 = (2, 1) 
which are requirements to find the directional 
derivative with the formula 𝐷𝑈𝑓(2, 1) = 𝑈 ∙
 𝛻𝑓(2, 1). 

Mp18IMT: IMT replaced the unit vector and 
gradient in the formula 𝐷𝑈𝑓(2, 1) = (4,8) ∙

(
2

√29
,

5

√29
), see Figure 9. 

Mp19IMT: IMT applied the dot product between 
the two vectors multiplying component by 

component obtaining: 𝐷𝑈𝑓(2, 1) =
8

√29
+

40

√29
. 

Mp20IMT: IMT added the fractions to obtain the 

directional derivative 𝐷𝑈𝑓(2, 1) =
48

√29
. 

After IMT obtained the directional derivative, a 

student (P10) participated in the class and said that 
48

√29
 

can be rationalized. So, P10 came to the board, 
rationalized, and got that the directional derivative is 
48√29

29
, see Figure 10. 

P59 mathematical practices (MpP59)  

Mp1P59: P59 read and understood task 1 by 
identifying the function, the direction of the vector 
U and the point 𝑃 = (0, 3). 

Mp2P59: P59 stated that the directional derivative 
is the rate of change of the function in the direction 
of a vector. 

Mp3P59: P59 considered the formula 𝐷𝑈𝑓(𝑥, 𝑦) =
𝑈 ∙  𝛻𝑓(𝑥, 𝑦) referring to the fact that the 
directional derivative is found by means of the dot 
product between the unit vector and the gradient 
of the function. 

Mp4P59: P59 stated that the gradient is a vector 
whose components are partial derivatives. 

Mp5P59: P59 stated that, 𝐷𝑈𝑓(𝑥, 𝑦) = 𝑈 ∙  𝛻𝑓(𝑥, 𝑦) 
is equivalent to 𝐷𝑈𝑓(𝑥, 𝑦) = (𝑐𝑜𝑠(𝜃), 𝑠𝑖𝑛(𝜃)) ∙
(𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦)).  

Mp6P59: P59 developed the dot product 
expressed in the previous formula obtaining the 

expression 𝐷𝑈𝑓(𝑥, 𝑦) =
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
 𝑐𝑜𝑠 (𝜃) +

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
𝑠𝑖𝑛 (𝜃) to find the directional derivative. 

Mp7P59: P59 substituted the function and the 
angle and substituted them into the formula 

expressed, as follows: 𝐷𝑈𝑓(𝑥, 𝑦) =
𝜕

𝜕𝑥
(2𝑥2 + 5𝑦2 +

5𝑥3𝑦 − 8𝑦)𝑐𝑜𝑠 (
𝜋

4
) +

𝜕

𝜕𝑦
(2𝑥2 + 5𝑦2 + 5𝑥3𝑦 −

8𝑦)𝑠𝑖𝑛 (
𝜋

4
).  

Mp8P59: P59 found the partial derivative of the 
function 𝑓 with respect to 𝑥 and obtained 4𝑥 +
15𝑥2𝑦.  

Mp9P59: P59 found the partial derivative of the 
function 𝑓 with respect to 𝑦, obtaining: 10𝑦 +
5𝑥3 − 8.  

Mp10P59: P59 replaced the partial derivatives in 

the formula 𝐷𝑈𝑓(𝑥, 𝑦) = (4𝑥 + 15𝑥2𝑦)𝑐𝑜𝑠 (
𝜋

4
) +

(10𝑦 + 5𝑥3 − 8)𝑠𝑖𝑛 (
𝜋

4
). 

Mp11P59: P59 determined the values of 𝑠𝑖𝑛 (
𝜋

4
) =

√𝟐

𝟐
 and 𝑐𝑜𝑠 (

𝜋

4
) =

√𝟐

𝟐
. 

Mp12P59: P59 replaced the sine and cosine values 

in the formula: 𝑫𝑼𝒇(𝒙, 𝒚) = (4𝑥 + 15𝑥2𝑦) (
√𝟐

𝟐
) +

(10𝑦 + 5𝑥3 − 8) (
√𝟐

𝟐
).  

Mp13P59: P59 applied the distributive 

property𝐷𝑈𝑓(𝑥, 𝑦) = [(4𝑥) (
√2

2
) + (15𝑥2𝑦) (

√2

2
)] +

 
Figure 9. IMT by applying the dot product (Source: 
Authors’ own elaboration) 

 
Figure 10. P10 participated in class and applied 
rationalization (Source: Authors’ own elaboration) 
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[(10𝑦) (
√2

2
) + (5𝑥3) (

√2

2
) − 8 (

√2

2
)] considering 

arithmetic operations. 

Mp14P59: P59 simplified the directional 

derivative by obtaining: 𝐷𝑈𝑓(𝑥, 𝑦) = [(2𝑥)(√2) +

(15𝑥2𝑦√2)

2
] + [(5𝑦)(√2) +

(5𝑥3)(√2)

2
− (4√2)].  

Mp15P59: P59 replaced the point 𝑃 = (0,3) in the 

directional derivative𝐷𝑈𝑓(0,3) = [(2(0))(√2) +

(15(0)2(3)√2)

2
] + [(5(3))(√2) +

(5(0)3)(√2)

2
− (4√2)]. 

 Mp16P59: P59 applied arithmetic operations to 
obtain the directional derivative at the point 𝑃 =

(0,3): 𝐷𝑈𝑓(0,3) = 15√2 − 4√2 = 11√2. 

Similarly, the mathematical practices of the other four 
tasks proposed in the questionnaire are analyzed as 
presented in Figure 11 (task 2 and task 3), with examples 
of the resolution of P59. 

Figure 12 shows P59’s resolution of task 4. 

Other students such as P73, P76, P77, P124, P125, 
P133, P136, P158, P160, P161, among others, performed 
tasks 3, 4, and 5 correctly, obtaining the same answer as 
P59, but with different steps. 

In relation to the resolution of task 5, P59 considered 

the formula 𝑑𝑖𝑣 𝐹 (𝑥, 𝑦, 𝑧) = 𝛻 ∙ 𝐹  and then the nabla 
vector and the components of the vector function in the 
above formula. Later, they found the following partial 

derivatives: 
𝜕(2𝑥)

𝜕𝑥
= 2; 

𝜕(3𝑦2)

𝜕𝑦
= 6𝑦;

𝜕(−5𝑧3)

𝜕𝑧
= −15𝑧2. Then, 

P59 added the results of the partial derivatives because 

it is a dot product and obtained: 𝑑𝑖𝑣 𝐹 (𝑥, 𝑦, 𝑧) = 2 + 6𝑦 −
15𝑧2. Finally, they evaluated the divergence in 𝑃 =
(1,2, −1) to obtain the divergence at a point: 

 
Figure 11. Resolution of task 2 and task 3 by P59 (Source: Authors’ own elaboration) 

 
Figure 12. Evidence of resolution of task 4 by P59 (Source: 
Authors’ own elaboration) 

 
Figure 13. Written production of P59 when solving task 5 (Source: Authors’ own elaboration) 
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𝑑𝑖𝑣 𝐹 (1,2, −1) = 2 + 6(2) − 15(−1)2 = 14 − 15 = −1, 
see Figure 13. 

Cognitive Configurations 

Several students participated in this research, but the 
cognitive configurations of primary objects that will be 
presented. We will only be exemplified with the 
mathematical activity of the teacher (IMT) and P59 and 

other cases that proceeded in a similar way when solving 
some tasks. 

IMT cognitive configuration 

This section presents the cognitive configuration of 
the IMT that brings together the primary objects that 
emerged from its mathematical activity to find the 
directional derivative (Table 3). 

Table 3. IMT’s cognitive configuration 

PO Description 

Problem 
situation (task) 

Determine the directional derivative of the function given by 𝑓(𝑥, 𝑦) = 𝑥2𝑦3 − 4𝑦 at the point 𝑃 = (2, 1) in the 
direction of the vector 𝑤 = 2𝑖 + 5𝑗. 

Language Verbal: Point, function, line, plane, derivative, partial derivative, partial derivative at a point, directional 
derivative, vector, gradient, unit vector, norm of vector, dot product, among others. 

Symbolic: 𝑓(𝑥, 𝑦) = 𝑥2𝑦3 − 4𝑦; 𝑃 = (2,1); �⃗⃗� = 2𝑖 + 5𝑗; 
𝜕(𝑥2𝑦3−4𝑦)

𝜕𝑥
= 2𝑥𝑦3; 

𝜕𝑓(2,1)

𝜕𝑥
= 2(2)(1)3 = 4; 

𝜕(𝑥2𝑦3−4𝑦)

𝜕𝑦
=

3𝑥2𝑦2 − 4; 
𝜕(2,1)

𝜕𝑦
= 3(2)2(1)2 − 4 = 8;  𝛻𝑓(𝑥,  𝑦) = (2𝑥𝑦3, 3𝑥2𝑦2 − 4); 𝛻𝑓(2,  1) = (4, 8); �⃗⃗� = 2𝑖 + 5𝑗; �⃗⃗� = (2,5); 

�⃗⃗� =
�⃗⃗� 

‖�⃗⃗� ‖
; �⃗⃗� = √(2)2 + (5)2;  �⃗⃗� = √4 + 25 = √29; �⃗⃗� = √29; �⃗⃗� =

2

√29
𝑖 +

5

√29
𝑗; �⃗⃗� = (

2

√29
,

5

√29
); 𝐷𝑈𝑓(2,  1) =

𝑈 ∙  𝛻𝑓(2,  1); 𝐷𝑈𝑓(2,  1) = (4,8) ∙ (
2

√29
,

5

√29
) ; 𝐷𝑈𝑓(2,  1) =

8

√29
+

40

√29
; 𝐷𝑈𝑓(2,  1) =

48

√29
; 
48√29

29
. 

Concepts/ 
definitions 

Previous concepts: Point, function, line, plane, derivative, partial derivative, partial derivative at a point, 
directional derivative, vector, gradient, unit vector, norm of a vector, dot product, among others. 
Definitions (D): D1: The directional derivative is understood as the rate of change of the function in the 
direction of a vector. 
D2: Vector nabla or gradient is one whose components are partial derivatives and is denoted by 𝛻𝑓. 
D3: The partial derivative of a function of several variables is the derivative of the function with respect to each 
of those variables, whether 𝑥, 𝑦, 𝑧, etc. 
D4: A vector is a line segment with magnitude, sense, and direction. 
D5: Unit vector is a vector with a magnitude equal to 1. 

Propositions/ 
properties 

Previous propositions: Arithmetic operations, determinants, etc.  

Proposition 1 (Pr1): The partial derivative of 𝑓 with respect to 𝑥 [
𝜕(𝑥2𝑦3−4𝑦)

𝜕𝑥
= 2𝑥𝑦3] evaluated at the point 𝑃 =

(2,1) is: 
𝜕𝑓(2,1)

𝜕𝑥
= 2(2)(1)3 = 4. 

Pr2: The partial derivative with respect to 𝑦 is [
𝜕(𝑥2𝑦3−4𝑦)

𝜕𝑦
= 3𝑥2𝑦2 − 4] evaluated at the point 𝑃 = (2,1) is: 

𝜕𝑓(2,1)

𝜕𝑦
= 3(2)2(1)2 − 4 = 8. 

Pr3: The gradient of 𝑓 [𝛻𝑓(𝑥,  𝑦) = (2𝑥𝑦3, 3𝑥2𝑦2 − 4)], evaluated in 𝑃 = (2,1) is equal to: 𝛻𝑓(2,  1) = (4, 8). 

Pr4: The norm of the vector 𝑤 is: �⃗⃗� = √29. 

Pr5: The unit vector is: �⃗⃗� =
2

√29
𝑖 +

5

√29
𝑗, equivalent to: �⃗⃗� = (

2

√29
,

5

√29
). 

Pr6: The directional derivative 𝐷𝑈𝑓(2,  1) =
48

√29
 equivalent to: 

48√29

29
. 

Procedures Great procedure (GP): Find the directional derivative of the function 𝑓(𝑥, 𝑦) = 𝑥2𝑦3 − 4𝑦 at 𝑃 = (0,1) in the 
direction �⃗⃗� = 2𝑖 + 5𝑗. 
Main procedure 1 (MPc1): Find the gradient of the function evaluated at 𝑃 = (2,1). 
Auxiliary procedure 1.1 (APc1.1): He found the partial derivative with respect to 𝑥 of 𝑓(𝑥, 𝑦) = 2𝑥𝑦3. 
APc1.2: IMT evaluated the partial derivative with respect to 𝑥 at 𝑃 = (2,1) iqual to 4. 
APc1.3: IMT found the partial derivative with respect to 𝑦 of 𝑓(𝑥, 𝑦) = 𝑥2𝑦3 − 4𝑦. 
APc1.4: IMT evaluated the partial derivative with respect to 𝑦 in 𝑃 = (2,1) iqual to 8. 
APc1.5: IMT symbolically represented the gradient of the function: [𝛻𝑓(𝑥,  𝑦) = (2𝑥𝑦3, 3𝑥2𝑦2 − 4)]. 
APc1.6: IMT symbolically represented the gradient of the function evaluated in 𝑃 = (2,1): 𝛻𝑓(2,  1) = (4, 8). 
MPc2: Find the unit vector of �⃗⃗� = 2𝑖 + 5𝑗. 
APc2.1: IMT used equivalent representations �⃗⃗� = 2𝑖 + 5𝑗 is equal to �⃗⃗� = (2,5). 

APc2.2: IMT applied the formula �⃗⃗� =
�⃗⃗� 

‖�⃗⃗� ‖
 and first found the norm of �⃗⃗� : ‖�⃗⃗� ‖ = √(2)2 + (5)2. 

APc2.3: IMT solved the powers in the radicand ‖�⃗⃗� ‖ = √4 + 25 

APc2.4: IMT added the radicand amounts and found the norm of the vector: ‖�⃗⃗� ‖ = √29. 

APc2.5: IMT obtained the unit vector: �⃗⃗� =
2

√29
𝑖 +

5

√29
𝑗, and said it is equivalent to: �⃗⃗� = (

2

√29
,

5

√29
). 

MPc3: Find the directional derivative considering the gradient evaluated at the point: 𝛻𝑓(2,  1) = (4, 8) and the 

unit vector: �⃗⃗� = (
2

√29
,

5

√29
). 

APc3.1: IMT applied the formula 𝐷𝑈𝑓(𝑥,  𝑦) = 𝑈 ∙  𝛻𝑓(𝑥,  𝑦) evaluated in 𝑃 = (0,1): 𝐷𝑈𝑓(2,  1) = 𝑈 ∙  𝛻𝑓(2,  1). 
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P59 cognitive configuration 

The cognitive configuration of P59 is constructed for 
task 1 considering the temporal narrative written before 
and the mathematical practices given before. 

Subsequently, with the information provided in 
mathematical practices and in the cognitive 
configurations of IMT and P59, the SFs that will be 
presented in section 4.5 are established (Table 4). 

  

Table 3 (Continued). 

PO Description 

 APc3.4: IMT added the fractions and got the directional derivative: 𝐷𝑈𝑓(2,  1) =
48

√29
 equivalent to 

48√29

29
. APc3.3: 

IMT applied the dot product multiplying component by component of each vector and obtained: 𝐷𝑈𝑓(2,  1) =
8

√29
+

40

√29
. APc3.2: IMT replaced the unit vector and the gradient: 𝐷𝑈𝑓(2,  1) = (4,8) ∙ (

2

√29
,

5

√29
). 

Arguments Argument 1 (A1): Thesis: The partial derivative of 𝑓 with respect to 𝑥 is [
𝜕(𝑥2𝑦3−4𝑦)

𝜕𝑥
= 2𝑥𝑦3] evaluated at the point 

𝑃 = (2,1) is: 
𝜕𝑓(2,1)

𝜕𝑥
= 2(2)(1)3 = 4. 

Reason 1 (R1): IMT derived the function with respect to 𝑥 using the derivative of a power function. 
R2: IMT evaluates the derivative with respect to 𝑥 at the point 𝑃 = (2,1) to obtain the partial derivative 4. 
Conclusion (C): Actually the partial derivative of 𝑓 with respect to 𝑥 is 4. 

A2: Thesis: The partial derivative of 𝑓 with respect to 𝑦 is [
𝜕(𝑥2𝑦3−4𝑦)

𝜕𝑥
= 3𝑥2𝑦2 − 4] evaluated at the point 𝑃 = (2,1) 

is: 
𝜕𝑓(2,1)

𝜕𝑦
= 3(2)2(1)2 − 4 = 8. 

R1: IMT derived the function with respect to 𝑦 using the derivative of a power function. 
R2: IMT evaluates the derivative with respect to 𝑦 at the point 𝑃 = (2,1) to obtain the partial derivative 8. 
Conclusion: Actually the partial derivative of 𝑓 with respect to 𝑦 is 8 

A3: Thesis: The gradient of evaluated at 𝑃 = (2,1) is equal to 𝛻𝑓(2,  1) = (4, 8).  
R1: IMT constructs and symbolizes the gradient with the partial derivative components with respect to 𝑥 and 𝑦: 
𝛻𝑓(𝑥,  𝑦) = (2𝑥𝑦3, 3𝑥2𝑦2 − 4) 
R2: IMT evaluates the gradient at 𝑃 = (2,1) to obtain 𝛻𝑓(2,  1) = (4, 8). 
Conclusion: Based on the partial derivatives it was found that the gradient is truly (4, 8). 

A4: Thesis: The norm of the vector 𝒘 is: ‖�⃗⃗⃗� ‖ = √𝟐𝟗. 
R1: IMT represents equivalent vectors: �⃗⃗⃗� = 𝟐𝒊 + 𝟓𝒋 is equal to �⃗⃗⃗� = (𝟐, 𝟓). 

R2: IMT applies the norm formula ‖�⃗⃗⃗� ‖ = √(𝟐)𝟐 + (𝟓)𝟐  

R3: Perform operations with potentiation, multiplications and additions to obtain: ‖�⃗⃗⃗� ‖ = √𝟒 + 𝟐𝟓 = √𝟐𝟗. 

Conclusion: Actually the norm of the vector 𝒘 is: ‖�⃗⃗⃗� ‖ = √𝟐𝟗. 

A5: Thesis: The unit vector is �⃗⃗� =
𝟐

√𝟐𝟗
𝒊 +

𝟓

√𝟐𝟗
𝒋 = (

𝟐

√𝟐𝟗
,

𝟓

√𝟐𝟗
) 

R1: IMT followed the unit vector formula: �⃗⃗� =
�⃗⃗⃗� 

‖�⃗⃗⃗� ‖
 to structure the vector �⃗⃗� =

𝟐

√𝟐𝟗
𝒊 +

𝟓

√𝟐𝟗
𝒋 in its vector 

representation. 

R2: IMT equivalently represents the unit vector (
𝟐

√𝟐𝟗
,

𝟓

√𝟐𝟗
). 

Conclusion: Finally the unit vector is (
𝟐

√𝟐𝟗
,

𝟓

√𝟐𝟗
). 

A6: Thesis: The directional derivative is 𝐷𝑈𝑓(2,  1) =
48

√29
 equivalent to: 

48√29

29
. 

R1: IMT applies to the dot product between the unit vector and the gradient vector. 

R2: IMT performs addition of fractions and obtains the directional derivative 𝐷𝑈𝑓(2,  1) =
48

√29
. 

R3: IMT with the help of a student rationalizes the expression 
48

√29
 getting an equivalent expression 

48√29

29
.  

Conclusion: The directional derivative is 
48√29

29
. 

 

Table 4. P59’s cognitive configuration 

PO Description 

Problem 
situation (task) 

Calculate the directional derivative for the function 𝑓(𝑥, 𝑦) = 2𝑥2 + 5𝑦2 + 5𝑥3 − 8𝑦 in the direction 𝑈 =

𝑐𝑜𝑠 (
𝜋

4
) 𝑖 + 𝑠𝑖𝑛 (

𝜋

4
) 𝑗 and evaluate said derivative at the indicated point 𝐷𝑢𝑓(0,3). 

Language Verbal: Point, function, line, plane, derivative, partial derivative, partial derivative at a point, directional 
derivative, vector, gradient, unit vector, norm of vector, dot product, among others.. 

Symbolic: 𝐷𝑈𝑓(𝑥,  𝑦) = 𝑈 ∙  𝛻𝑓(𝑥,  𝑦), 𝑫𝑼𝒇(𝒙,  𝒚) = (𝒄𝒐𝒔(𝜽), 𝒔𝒊𝒏(𝜽)) ∙ (𝒇𝒙(𝒙,  𝒚), 𝒇𝒚(𝒙,  𝒚)) , 𝑫𝑼𝒇(𝒙, 𝒚) =
𝝏𝒇(𝒙,𝒚)

𝝏𝒙
 𝒄𝒐𝒔 (𝜽) +

𝝏𝒇(𝒙,𝒚)

𝝏𝒚
𝒔𝒊𝒏 (𝜽), 𝑫𝑼𝒇(𝒙, 𝒚) =

𝝏

𝝏𝒙
(𝟐𝒙𝟐 + 𝟓𝒚𝟐 + 𝟓𝒙𝟑𝒚 − 𝟖𝒚)𝒄𝒐𝒔 (

𝝅

𝟒
) +

𝝏

𝝏𝒚
(𝟐𝒙𝟐 + 𝟓𝒚𝟐 + 𝟓𝒙𝟑𝒚 −

𝟖𝒚)𝒔𝒊𝒏 (
𝝅

𝟒
) , 4𝑥 + 15𝑥2𝑦, 10𝑦 + 5𝑥3 − 8, 𝑠𝑖𝑛 (

𝜋

4
) =

√𝟐

𝟐
, 𝑐𝑜𝑠 (

𝜋

4
) =

√𝟐

𝟐
, 𝑫𝑼𝒇(𝒙, 𝒚) = (4𝑥 + 15𝑥2𝑦) (

√𝟐

𝟐
) +

(10𝑦 + 5𝑥3 − 8) (
√𝟐

𝟐
) ,𝑫𝑼𝒇(𝒙, 𝒚) = [(𝟒𝒙) (

√𝟐

𝟐
) + (𝟏𝟓𝒙𝟐𝒚) (

√𝟐

𝟐
)] + [(𝟏𝟎𝒚) (

√𝟐

𝟐
) + (𝟓𝒙𝟑) (

√𝟐

𝟐
) − 𝟖 (

√𝟐

𝟐
)] , 𝑫𝑼𝒇(𝒙, 𝒚) = 
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Table 4 (Continued). P59’s cognitive configuration 

PO Description 

 [(𝟐𝒙)(√𝟐) +
(𝟏𝟓𝒙𝟐𝒚√𝟐)

𝟐
] + [(𝟓𝒚)(√𝟐) +

(𝟓𝒙𝟑)(√𝟐)

𝟐
− (𝟒√𝟐)], 𝑃 = (0,3), 𝐷𝑈𝑓(0,3) = [(2(0))(√2) +

(15(0)2(3)√2)

2
] +

[(5(3))(√2) +
(5(0)3)(√2)

2
− (4√2)], 𝐷𝑈𝑓(0,3) = 15√2 − 4√2 = 11√2. 

Concepts/ 
definitions 

Previous concepts: Point, function, line, plane, derivative, partial derivative, partial derivative at a point, 
directional derivative, vector, gradient, unit vector, norm of a vector, dot product, among others. 
Definitions (D): D1: The directional derivative is defined as the rate of change of the function in the direction of a 
vector. 
D2: Nabla vector or gradient is the one whose components are partial derivatives and is denoted by 𝛻𝑓. 
D3: The partial derivative of a function of several variables is the derivative of the function with respect to each 
one of those variables, either 𝑥, 𝑦, 𝑧, etc. 
D4: A vector is a line segment with magnitude, sense, and direction.  
D5: Unit vector is a vector with a magnitude equal to 1. 

Propositions/ 
properties 

Previous propositions: Arithmetic operations, determinants, distributive property, etc.  
Proposition 1 (Pr1): P59 stated that the directional derivative is found with the formula 𝐷𝑈𝑓(𝑥,  𝑦) = 𝑈 ∙  𝛻𝑓(𝑥,  𝑦). 

Pr2: P59 stated that with the formula 𝐷𝑈𝑓(𝑥, 𝑦) =
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
𝑐𝑜𝑠 (𝜃) +

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
𝑠𝑖𝑛 (𝜃) the directional derivative is 

found by specifying the dot product, unit vector and partial derivatives. 
Pr3: P59 said that partial derivative with respect to 𝑥 is 4𝑥 + 15𝑥2𝑦. 
Pr4: P59 said that partial derivative with respect to 𝑦 is 10𝑦 + 5𝑥3 − 8. 

Pr5: P59 mentioned that the general directional derivative is 𝐷𝑈𝑓(𝑥, 𝑦) = [(2𝑥)(√2) +
(15𝑥2𝑦√2)

2
] +

[(5𝑦)(√2) +
(5𝑥3)(√2)

2
− (4√2)]. 

Pr6: P59 found that the directional derivative at point 𝑃 = (0,3) is 𝐷𝑈𝑓(0,3) = 15√2 − 4√2 = 11√2. 

Procedures Great procedure (GP): Calculate the directional derivative for the function 𝑓(𝑥, 𝑦) = 2𝑥2 + 5𝑦2 + 5𝑥3 − 8𝑦 in the 

direction 𝑈 = 𝑐𝑜𝑠 (
𝜋

4
) 𝑖 + 𝑠𝑖𝑛 (

𝜋

4
) 𝑗 evaluated in 𝑃 = (0,3). 

Main procedure 1 (MPc1): explicitly obtain the formula to find the directional derivative. 
Auxiliary procedure 1.1 (APc1.1): P59 expressed the formula of the directional derivative 𝐷𝑈𝑓(𝑥,  𝑦) =
𝑈 ∙  𝛻𝑓(𝑥,  𝑦). 
APc1.2: P59 replaced the unit vector in its trigonometric form and the gradient with the components as partial 

derivatives of the function: 𝐷𝑈𝑓(𝑥,  𝑦) = (𝑐𝑜𝑠(𝜃), 𝑠𝑖𝑛(𝜃)) ∙ (𝑓𝑥(𝑥,  𝑦), 𝑓𝑦(𝑥,  𝑦)). 

APc1.3: P59 executed the dot product between the unit vector and the gradient, multiplying component by 

component: 𝐷𝑈𝑓(𝑥, 𝑦) =
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
𝑐𝑜𝑠 (𝜃) +

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
𝑠𝑖𝑛 (𝜃). 

Hereafter, it is recognized that P59 follows the procedures using the formula obtained in APc1.3. However, it 
will now be shown how P59 obtained the gradient and then the unit vector and substitutes them into the 
formula. 
MPc2: obtain the directional derivative of the function in general form. 

APc2.1: P59 substituted the function and the unit vector in the formula: 𝐷𝑈𝑓(𝑥, 𝑦) =
𝜕

𝜕𝑥
(2𝑥2 + 5𝑦2 + 5𝑥3𝑦 −

8𝑦)𝑐𝑜𝑠 (
𝜋

4
) +

𝜕

𝜕𝑦
(2𝑥2 + 5𝑦2 + 5𝑥3𝑦 − 8𝑦)𝑠𝑖𝑛 (

𝜋

4
).  

APc2.2: P59 found the partial derivative with respect to 𝑥: 4𝑥 + 15𝑥2𝑦. 
APc2.3: P59 found the partial derivative with respect to 𝑦: 10𝑦 + 5𝑥3 − 8. 
APc2.4: P59 substituted the partial derivatives obtained in APc2.2 and APc2.3 in the formula: 𝑫𝑼𝒇(𝒙, 𝒚) =

(4𝑥 + 15𝑥2𝑦)𝑐𝑜𝑠 (
𝜋

4
) + (10𝑦 + 5𝑥3 − 8)𝑠𝑖𝑛 (

𝜋

4
). 

APc2.5: P59 obtained the values of the 𝑠𝑖𝑛 (
𝜋

4
) =

√𝟐

𝟐
 and 𝑐𝑜𝑠 (

𝜋

4
) =

√𝟐

𝟐
 fundamental to find the components of the 

unit vector. 
APc2.6: P59 substituted the components of the unit vector in the formula:  

𝑫𝑼𝒇(𝒙, 𝒚) = (4𝑥 + 15𝑥2𝑦) (
√𝟐

𝟐
) + (10𝑦 + 5𝑥3 − 8) (

√𝟐

𝟐
). 

APc2.7: P59 applied the distributive property to the expression obtained in APc2.5, resulting: 𝑫𝑼𝒇(𝒙, 𝒚) =

[(𝟒𝒙) (
√𝟐

𝟐
) + (𝟏𝟓𝒙𝟐𝒚) (

√𝟐

𝟐
)] + [(𝟏𝟎𝒚) (

√𝟐

𝟐
) + (𝟓𝒙𝟑) (

√𝟐

𝟐
) − 𝟖 (

√𝟐

𝟐
)] 

APc2.8: P59 uses simplification to reduce the expression: 𝑫𝑼𝒇(𝒙, 𝒚) = [(𝟐𝒙)(√𝟐) +
(𝟏𝟓𝒙𝟐𝒚√𝟐)

𝟐
] +

[(𝟓𝒚)(√𝟐) +
(𝟓𝒙𝟑)(√𝟐)

𝟐
− (𝟒√𝟐)] 

MPc3: Obtain the directional derivative at the point 𝑃 = (0,3). 
APc3.1: P59 substituted 𝑃 = (0,3) in the global directional derivative and obtained: 𝐷𝑈𝑓(0,3) =

[(2(0))(√2) +
(15(0)2(3)√2)

2
] + [(5(3))(√2) +

(5(0)3)(√2)

2
− (4√2)]. 

APc3.2. After doing arithmetic operations and radicals, P59 got the derivative at a point 𝐷𝑈𝑓(0,3) = 15√2 −

4√2 = 11√2 (Figure 14). 
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Table 4 (Continued). P59’s cognitive configuration 

PO Description 

 
 

 
Figure 14. Procedure performed by P59 (Source: Authors’ own elaboration) 

Arguments A1: Thesis: The formula 𝐷𝑈𝑓(𝑥,  𝑦) = 𝑈 ∙  𝛻𝑓(𝑥,  𝑦) is useful for finding the directional derivative. 
R1: P59 mentions that the directional derivative is obtained by performing the dot product between the nabla 
vector and the unit vector. 
Conclusion: Indeed, the formula is useful to find the directional derivative 

A2: Thesis: The explicit formula for finding directional derivative is 𝐷𝑈𝑓(𝑥, 𝑦) =
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
𝑐𝑜𝑠 (𝜃) +

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
𝑠𝑖𝑛 (𝜃). 

R1: P59 executed the dot product between 𝐷𝑈𝑓(𝑥,  𝑦) = (𝑐𝑜𝑠(𝜃), 𝑠𝑒𝑛(𝜃)) ∙ (𝑓𝑥(𝑥,  𝑦), 𝑓𝑦(𝑥,  𝑦)). 

Conclusion: After running the dot product the proper formula for finding the directional derivative is: 

𝐷𝑈𝑓(𝑥, 𝑦) =
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
𝑐𝑜𝑠 (𝜃) +

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
𝑠𝑒𝑛 (𝜃). 

A3: Thesis: The partial derivative with respect to 𝑥 is 4𝑥 + 15𝑥2𝑦. 

R1: P59 used the partial derivative rule with respect to x of the power function 
𝜕

𝜕𝑥
(2𝑥2 + 5𝑦2 + 5𝑥3𝑦 − 8𝑦).  

Conclusion: Actually, the partial derivative of 𝑓 with respect to 𝑥 is 4𝑥 + 15𝑥2𝑦. 

A4: Thesis: The partial derivative with respect to 𝑦 is 10𝑦 + 5𝑥3 − 8. 

R1: P59 used the rule of partial derivative with respect to 𝑦 of the power function 
𝜕

𝜕𝑦
(2𝑥2 + 5𝑦2 + 5𝑥3𝑦 − 8𝑦). 

Conclusion: Actually, the partial derivative of 𝑓 with respect to 𝑦 is 10𝑦 + 5𝑥3 − 8. 

A5: Thesis: The general directional derivative is 𝐷𝑈𝑓(𝑥, 𝑦) = [(2𝑥)(√2) +
(15𝑥2𝑦√2)

2
] + [(5𝑦)(√2) +

(5𝑥3)(√2)

2
−

(4√2)]. 

R1: P59 substituted the partial derivatives obtained in APc2.2 and APc2.3 in the formula: 𝑫𝑼𝒇(𝒙, 𝒚) =

(4𝑥 + 15𝑥2𝑦)𝑐𝑜𝑠 (
𝜋

4
) + (10𝑦 + 5𝑥3 − 8)𝑠𝑖𝑛 (

𝜋

4
). 

R2: P59 obtained the values of the 𝑠𝑖𝑛 (
𝜋

4
) =

√𝟐

𝟐
 and 𝑐𝑜𝑠 (

𝜋

4
) =

√𝟐

𝟐
.  

R3: P59 substituted the components of the unit vector in the formula: 𝑫𝑼𝒇(𝒙, 𝒚) = (4𝑥 + 15𝑥2𝑦) (
√𝟐

𝟐
) +

(10𝑦 + 5𝑥3 − 8) (
√𝟐

𝟐
). 

R4: P59 applied the distributive property to the written expression in R3 resulting in: 𝑫𝑼𝒇(𝒙, 𝒚) =

[(𝟒𝒙) (
√𝟐

𝟐
) + (𝟏𝟓𝒙𝟐𝒚) (

√𝟐

𝟐
)] + [(𝟏𝟎𝒚) (

√𝟐

𝟐
) + (𝟓𝒙𝟑) (

√𝟐

𝟐
) − 𝟖 (

√𝟐

𝟐
)] 

R5: P59 simplified the above expression. 

Conclusion: Effectively the directional derivative in its general form is: 𝑫𝑼𝒇(𝒙, 𝒚) = [(𝟐𝒙)(√𝟐) +
(𝟏𝟓𝒙𝟐𝒚√𝟐)

𝟐
] +

[(𝟓𝒚)(√𝟐) +
(𝟓𝒙𝟑)(√𝟐)

𝟐
− (𝟒√𝟐)]. 

A6: Thesis: The directional derivative of 𝑓 at the point 𝑃 = (0,3) is: 11√2 

R1: P59 substituted P = (0, 3) in the general directional derivative obtaining: 𝐷𝑈𝑓(0,3) = [(2(0))(√2) +

(15(0)2(3)√2)

2
] + [(5(3))(√2) +

(5(0)3)(√2)

2
− (4√2)]. 

R2: P59 performed arithmetic and radical operations, obtained the directional derivative at a point 𝐷𝑈𝑓(0,3) =

15√2 − 4√2 = 11√2. 

Conclusion: Finally, the directional derivative at 𝑃 = (0,3) is 11√2. 
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Semiotic Functions 

IMT semiotic functions 

The SFs presented in Figure 15 reflct the sequence of 
actions performed by the IMT when solving and 
explaining the problem to its students. 

P59 semiotic functions  

Figure 15 shows the SFs activated by P59, which 
highlights the persuasive power of mathematical 
practices as guides for the sequence of these SFs. In 
addition, no graphical representations are observed 
because participants based their resolution on symbolic 
and/or numerical representations. However, in the 
answers to the preliminary questions, they used 
graphical representations related to the tangent plane to 
the surface. These preliminary graphical representations 
allowed participants to visualize more concretely the 
spatial relationships and geometry of the problem, 
facilitating a more intuitive and deeper understanding of 

the meanings of vector and partial derivative before 
addressing the symbolic expressions. This suggests that 
the integration of different types of representations can 
enrich the process of solving mathematical problems. 

Mathematical Connections  

The mathematical connections established by the 
IMT and P59 are fundamental for solving the tasks 
proposed in the questionnaire. This detailed analysis 
makes it possible to visualize the mathematical practices, 
processes, objects (described in the configurations) and 
SFs (which relate them) listed sequentially in Figure 15 
and Figure 16. 

IMT mathematical connections 

Table 5 provides relevant information that should be 
read from left to right (from mathematical practices to 
mathematical connections), in order to recognize the 
constitution of each mathematical connection and the 
vital importance of mathematical practice.  

 
Figure 15. IMT semiotic functions (Source: Authors’ own 
elaboration) 

 
Figure 16. P59 SFs to solve task 1 (Source: Authors’ own 
elaboration) 
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P59 mathematical connections 

Based on the information from the mathematical 
practices of P59 and that is contained in Figure 16, the 
mathematical connections are established in Table 6 
(read from left to right). 

Now, to explain in more detail, we exemplify with the 
procedural mathematical connection associated with the 
MP8 of the IMT in Table 5, using in turn, the definition 

of mathematical connection (metaphorically speaking) as 
the tip of an iceberg. Other special connections that 
emerged in the preliminary tasks are those of meaning, 
different representations and part-whole, where 
students proceeded adequately in solving the tasks. 
However, other students presented difficulties in 
solving the tasks due to mathematical errors caused by 
the disconnections (personal connections) activated. For 

Table 5. Mathematical connections established by IMT to solve task 1 

Mp Processes Objects SFs 
Mathematical 
connections 

Mp1 Understanding-problematization-
enunciation 

Derivative, slope, rate of change SF1 Instruction-
oriented 

Mp2 Signification/understanding-
problem-solving-enunciation 

Meaning of the directional derivative SF2, SF3 Meaning 

Mp3 Signification/understanding-
problem-solving-enunciation 

Meaning of the gradient SF4 Meaning 

Mp4 Signification/understanding-
problem-solving-enunciation 

Meaning of the partial derivative SF5 Meaning 

Mp5 Problem-solving-algorithmizing- 
representation 

IMT found the partial derivative of f with respect to 

x, 
∂(x2y3−4y)

∂x
= 2xy3 

SF6, 
SF7, SF8 

Procedural 

Mp6 Problem-solving-algorithmizing- 

representation-argumentation 

The partial derivative with respect to x at the point 

P = (2,1) is: 
∂f(2,1)

∂x
= 2(2)(1)3 = 4 

SF9, 
SF10, SF11 

Procedural 

Mp7 Problem-solving-algorithmizing- 
representation 

IMT found the partial derivative of f with respect to 

y, 
∂(x2y3−4y)

∂y
= 3x2y2 − 4 

SF12 Procedural 

Mp8 Problem-solving-algorithmizing- 
representation-argumentation 

The partial derivative with respect to y at point P =

(2,1) is: 
∂f(2,1)

∂y
= 3(2)2(1)2 − 4 = 8 

SF13, 
SF14, SF15 

Procedural 

Mp9 Problem-solving-algorithmizing- 
representation 

IMT wrote the symbolic expression of gradient: 
∇f(x,  y) = (2xy3, 3x2y2 − 4), referring to the partial 

derivative with respect to x (for the first component) 
and the partial derivative with respect to y (for the 

second component). 

SF16 Different 
representations 

considering 
characteristics 

Mp10 Problem-solving-algorithmizing 
representation-argumentation 

IMT wrote the symbolic expression of the gradient 𝑓 
evaluated at 𝑃 = (2, 1) iqual to: 𝛻𝑓(2,  1) = (4, 8). 

SF17, SF18, 
SF219 

Different 
representations 

Mp11 Problem-solving-representation 
 

IMT transitioned from vector representation �⃗⃗� =
2𝑖 + 5𝑗 to rectangular coordinate representation �⃗⃗� =

(2,5) 

SF20, SF21 Different 
representations 

Mp12 Problem-solving-algorithmizing IMT applied the formula �⃗⃗� =
�⃗⃗� 

‖�⃗⃗� ‖
 and found the 

norm of �⃗⃗� : ‖�⃗⃗� ‖ = √(2)2 + (5)2. 

SF22, SF23 Procedural 

Mp13 Problem-solving-algorithmizing- 
representation 

‖�⃗⃗� ‖ = √4 + 25. SF24 Procedural 
 

Mp14 Problem-solving-argumentation ‖�⃗⃗� ‖ = √29. SF25, SF26, 
SF27 

Procedural 

Mp15 Problem-solving-algorithmizing- 
representation 

Unit vector in its vector representation: �⃗⃗� =
2

√29
𝑖 +

5

√29
𝑗. 

SF28 Procedural 
 

Mp16 Problem-solving-representation- 

argumentation 
�⃗⃗� = (

2

√29
,

5

√29
) 

SF29, SF30, 
SF31 

Different 
representations 

Mp17 Problem-solving-representation Unit vector and gradient evaluated in 𝑃 = (2,1), are 
requirements for finding the directional derivative: 

𝐷𝑈𝑓(2,  1) = 𝑈 ∙  𝛻𝑓(2,  1). 

SF32, SF33 Instruction-
oriented 

different 
representations 

Mp18 Problem-solving-representation 
𝐷𝑈𝑓(2,  1) = (4,8) ∙  (

2

√29
,

5

√29
) 

SF34 Procedural 

Mp19 Problem-solving-algorithmizing- 
representation 

𝐷𝑈𝑓(2,  1) =
8

√29
+

40

√29
 

SF35 Procedural 

Mp20 Problem-solving-algorithmizing- 

Representation-argumentation 𝐷𝑈𝑓(2,  1) =
48

√29
=

48√29

29
 

SF36, SF37, 
SF38, SF39 

Procedural 
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example, the students solved the questionnaire with the 
five proposed tasks, which were qualified from 0 to 5, 
but for the students who made mistakes in some task(s), 
their qualification was from 0 to 4.  

Figure 17 shows that 72% (n = 145) corresponds to 
students who performed all five tasks correctly. 11% (n 
= 22) refer to the students who obtained 4.0 in the 
qualification and have an incorrect task. Likewise, 10% 
(n = 20) are the students who achieved the qualification 
of 3.0, which implies that they have two incorrect 
assignments. 4% (n = 8) are the students who failed in 
solving three tasks and got the qualification 2.0. The 1% 
(n = 2) reports that two students failed to solve four tasks 
and their qualification was 1.0. While 2% (n = 5) are the 
students who failed to solve any of the tasks proposed in 

the questionnaire and their qualification was 0. 
Furthermore, on the one hand, it is deduced that 7% (n = 
15) are the students who did not pass the questionnaire 
because the minimum qualification for passing is 3.0. On 
the other hand, 93% (n = 187) represent the students who 
passed the questionnaire because they at least solved 3 
tasks, or 5 tasks correctly.  

Specifically, Figure 18 shows all the scores 
(questionnaire qualifications) of the students. 

Finally, the report of the results of this study shows a 
particular case of one of the students who did not solve 
task 1 properly because they made personal connections 
and activated an error in the procedure (Figure 19). 

Table 6. P59 mathematical connections 

Mp Processes Objects SFs 
Mathematical 
connections 

Mp1 Understanding-problematization-
enunciation 

Identification of the task data and understanding of 
the problem situation. 

SF1  

Mp2 Signification/understanding- 
problem-solving-enunciation 

Meaning of the directional derivative SF2, SF3 Meaning 

Mp3 Signification/understanding- 
problem-solving-enunciation 

Meaning of the directional derivative (represented 
in the formula and how it can be used) 

SF4, SF5, 
SF6, SF7, 
SF8, SF9 

Meaning-based 
on different 

representations 
Mp4 Signification/understanding-

problem-solving-enunciation 
Meaning of the gradient vector SF10 Meaning 

Mp5 Problem-solving-representation 𝐷𝑈𝑓(𝑥,  𝑦) = 𝑈 ∙  𝛻𝑓(𝑥,  𝑦) is equivalent to 
𝐷𝑈𝑓(𝑥,  𝑦) = (𝑐𝑜𝑠(𝜃), 𝑠𝑖𝑛(𝜃)) ∙ (𝑓𝑥(𝑥,  𝑦), 𝑓𝑦(𝑥,  𝑦)). 

SF11 Different 
representations 

Mp6 Problem-solving-algorithmizing- 
representation-argumentation 

Development of the dot product to obtain the 

explicit formula: 𝐷𝑈𝑓(𝑥, 𝑦) =
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
 𝑐𝑜𝑠 (𝜃) +

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
𝑠𝑖𝑛 (𝜃) 

SF12, SF13, 
SF14 

Procedural 
 

Mp7 Problem-solving-algorithmizing - 
representation 

𝐷𝑈𝑓(𝑥, 𝑦) =
𝜕

𝜕𝑥
(2𝑥2 + 5𝑦2 + 5𝑥3𝑦 − 8𝑦)𝑐𝑜𝑠 (

𝜋

4
) +

𝜕

𝜕𝑦
(2𝑥2 + 5𝑦2 + 5𝑥3𝑦 − 8𝑦)𝑠𝑖𝑛 (

𝜋

4
). 

SF15, SF16 Procedural 
 

Mp8 Problem-solving-algorithmizing-
representation-argumentation 

Partial derivative of the function 𝑓 with respect to 𝑥 
y obtained 4𝑥 + 15𝑥2𝑦. 

SF17, SF18, 
SF19 

Procedural 
 

Mp9 Problem-solving-algorithmizing-
representation-argumentation 

Partial derivative of the function 𝑓 with respect to 𝑦, 
obtaining: 10𝑦 + 5𝑥3 − 8 

SF20, SF21, 
SF22 

Procedural 

Mp10 Problem-solving-algorithmizing- 
representation 

 

𝐷𝑈𝑓(𝑥, 𝑦) = (4𝑥 + 15𝑥2𝑦)𝑐𝑜𝑠 (
𝜋

4
) + (10𝑦 + 5𝑥3 −

8)𝑠𝑖𝑛 (
𝜋

4
). 

SF23 Procedural 

Mp11 Problem-solving-algorithmizing-
representation 

𝑠𝑖𝑛 (
𝜋

4
) =

√𝟐

𝟐
 and 𝑐𝑜𝑠 (

𝜋

4
) =

√𝟐

𝟐
 SF24 Procedural 

Mp12 Problem-solving-algorithmizing-
representation 

𝑫𝑼𝒇(𝒙, 𝒚) = (4𝑥 + 15𝑥2𝑦) (
√𝟐

𝟐
) + (10𝑦 + 5𝑥3 −

8) (
√2

2
). 

SF25 Procedural 

Mp13 Problem-solving-algorithmizing- 
representation 

𝐷𝑈𝑓(𝑥, 𝑦) = [(4𝑥) (
√2

2
) + (15𝑥2𝑦) (

√2

2
)] +

[(10𝑦) (
√2

2
) + (5𝑥3) (

√2

2
) − 8 (

√2

2
)]. 

SF26 Procedural 

Mp14 Problem-solving-algorithmizing- 
representation-argumentation 

𝐷𝑈𝑓(𝑥, 𝑦) = [(2𝑥)(√2) +
(15𝑥2𝑦√2)

2
] + [(5𝑦)(√2) +

(5𝑥3)(√2)

2
− (4√2)]. 

SF27, SF28, 
SF29 

Procedural 

Mp15 Problem-solving-algorithmizing- 
representation 

P59 replaced the point 𝑃 = (0, 3) in the directional 

derivative 𝐷𝑈𝑓(0,3) = [(2(0))(√2) +
(15(0)2(3)√2)

2
] +

[(5(3))(√2) +
(5(0)3)(√2)

2
− (4√2)]. 

SF30, SF31 Procedural 

Mp16 Problem-solving-algorithmizing- 
representation-argumentation 

𝐷𝑈𝑓(0,3) = 15√2 − 4√2 = 11√2. SF32, SF33, 
SF34 

Procedural 
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DISCUSSION 

The results of this research have revealed that the 
vector calculus teacher explains the topics associated 

with vectors, partial and directional derivatives based on 
mathematical connections (instruction-oriented, 
meaning, procedural, different representations, feature 
and part-whole), which is evidenced in the step-by-step 
followed to find the directional derivative.  

In addition, in the middle of the explanation, it 
encourages student participation, a fundamental aspect 
to ensure the understanding and appropriation of the 
concepts addressed. 

Another fundamental aspect is that most of the 
students solved the tasks successfully (72% 
corresponding to 145 students), where they activated 
mathematical connections of meaning, procedural, 
different representations, feature, part-whole, which 
were detailed in terms of mathematical practices, 
processes/objects and SFs that relate them.  

The other 28% of the students (corresponding to 57 
students) made at least one error caused by some 
personal connection made and, therefore, did not solve 
all five tasks correctly. It is worth noting that only 15 
students (7%) failed the questionnaire because they 
obtained a qualification lower than 3.0, which is the 
minimum qualification for passing. Although few 
students failed the questionnaire, as teachers and 

 
Figure 17. IMT’s mathematical connection of procedural 
(Source: Authors’ own elaboration) 

 
Figure 19. Evidence of personal connection affecting the P169 procedure in task 1 (Source: Authors’ own elaboration) 

 
Figure 18. Student qualifications (Source: Authors’ own elaboration) 
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researchers we are committed to continue applying 
teaching and learning strategies (using mathematical 
connections) to contribute to the understanding of the 
concepts of vector calculus and mitigate errors. 

One of the most common errors was procedural, such 
as failing to properly connect steps when calculating 
partial derivatives (Figure 19). Students also struggled 
with finding curl due to incorrect use of the vector 
product and determinants involved in partial derivative 
operations. These challenges highlight the need for 
teachers to design lessons rich in mathematical processes 
and representations, including verbal, numerical, 
graphical, and symbolic languages. Emphasis should be 
placed on demonstrating definitions, clear procedures, 
and logically supported propositions, fostering 
communication and argumentation to support students 
in overcoming these difficulties. 

Students in this research attributed meanings to the 
concepts of vector, partial derivative, and directional 
derivative, graphing vectors and the tangent line in a 
plane on a surface within its vector space (Figure 6 and 
Figure 7). However, some only associated these concepts 
with their definition as a limit. Various authors 
(Bajracharya et al., 2019; MacGee & Moore-Russo, 2015; 
Martínez-Planell et al., 2015, 2017; Roundy et al., 2015; 
Thompson et al., 2012; Wangberg & Johnson, 2013; 
Wangberg et al., 2022; Weber, 2015; Weber et al., 2012) 
emphasize the importance of geometric representations 
in teaching partial and directional derivatives, as these 
enhance mathematical understanding through 
connections. Moreno-Arotzena et al. (2021) highlight the 
role of graphical gradient representations in fostering 
visual understanding. While some students 
demonstrated strong procedural and geometric 
connections, others struggled with partial derivatives. 
As suggested by Weber (2015) and Weber et al. (2012), 
mastering partial derivatives is crucial for correctly 
solving directional derivatives. 

We are convinced that these difficulties of students in 
solving problems with partial derivatives, directional 
derivatives, gradient, curl, among other concepts, are 
caused because students still have difficulties in 
understanding the concept of vector, doing operations 
with vectors, finding the norm, the vector and scalar 
product and finding derivatives graphically, etc. 
(Barniol & Zavala, 2016; Flores-García et al., 2007; 
Possani et al., 2010; Rakkapao et al., 2016; Rodríguez-
Nieto et al., 2024; Rodríguez-Vásquez et al., 2024; 
Salgado & Trigueros, 2014; Susac et al., 2018). 

Regarding the theoretical and methodological 
aspects, it was evident that the data were analyzed in an 
organized and detailed manner, assessing the 
mathematical practices, the configurations of primary 
objects and the connections identified thanks to the 
networking between the ETC and the OSA. This is an 
analysis method that can be used in different scenarios 

and works where analysis of mathematical activity and 
understanding of the concepts is required. One of the 
limitations of this research is that the results cannot be 
generalized due to their qualitative and descriptive 
nature, and it is advisable to perform a quantitative 
analysis. In addition, this study did not use software to 
graph or create procedures, which is important for 
calculus classes and active mathematical connections. 

CONCLUSIONS 

This research revealed a teaching methodology by 
the IMT on vector calculus, focused on mathematical 
connections, which has been effective in the 
understanding and resolution of mathematical problems 
on partial and directional derivation (including rotation 
and divergence) by the participating students. Also, in 
this work, the active participation of the students in the 
classes was promoted and was fundamental to ensure 
the assimilation of the concepts addressed. 

The analysis shows details about the mathematical 
connections that activate a type of understanding of the 
concepts of vector calculus, but also suggests that 
difficulties in understanding concepts such as vector, 
partial and directional derivative, gradient and curl are 
persistent among some students (at least in this research 
there are 15 students who urgently need attention 
because they did not reach the minimum qualifications 
of 3.0 to pass the questionnaire), which highlights the 
need to improve the instruction and use of geometric 
representations. In fact, previous studies mark the 
frontier of research with this problem and agree on the 
importance of working with graphic representations to 
facilitate the visual and conceptual understanding of 
these topics. In addition, procedural understanding 
should be strengthened with students because to find the 
gradient, the directional derivative and curl, the partial 
derivative is required, which is the concept that 
generates problems in students, not only for derivatives 
or functions, but for arithmetic and algebraic aspects 
implicit in the norm, unit vector, dot and vector product, 
among other operations with vectors. 

Future studies should use exhaustive and detailed 
data analysis methods focused on mathematical 
practices and onto-semiotic configurations. This 
approach, emphasizing mathematical connections, can 
be applied in various educational contexts. The study 
also highlights the potential for developing didactic 
strategies that strengthen understanding through 
connections, geometric representations, and 
argumentation, linking institutional mathematics to 
daily life, reducing errors, and improving academic 
performance. 
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